Event-Based Cooperative Control Framework for Robot Teams

Author(s):  
Igor Bychkov ◽  
Sergey Ul’yanov ◽  
Nadezhda Nagul ◽  
Artem Davydov ◽  
Maksim Kenzin ◽  
...  
Author(s):  
Yantao Tian ◽  
Kai Huang ◽  
Xuanhao Cao ◽  
Yulong Liu ◽  
Xuewu Ji

Roll stability is a major concern in the path tracking process of intelligent heavy vehicles in emergency steering maneuvers. Due to the coupling of lateral and roll motions of heavy vehicle, steering actions for path tracking may come into conflict with that for roll stability. In this paper, a hierarchical adaptive control framework composed of a supervisor, an upper controller and a lower controller is developed to mediate conflicting objectives of path tracking and roll stability via steering control. In the supervisor, path tracking control mode or cooperative control mode of path tracking and roll stability is determined by the predicted rollover index, and a weight function is introduced to balance the control objectives of path tracking and roll stability in cooperative control mode. Then, in order to achieve multi-objective real-time optimization, model predictive control with varying optimization weights is used in the upper controller to calculate the desired front steer angle. The lower controller which integrates the real electrically assisted hydraulic steering system based on Proportional-Integral-Derivative control is designed to control steering wheel angle. Simulation and hardware-in-loop implementation results in double lane change scenario show that the proposed hierarchical adaptive control framework can enhance roll stability in emergency steering maneuvers while keeping the accuracy of path tracking for intelligent heavy vehicle within an acceptable range.


Author(s):  
Haiyang Ding ◽  
Mazen Alamir ◽  
Francois Bonne ◽  
Ahmad Hably ◽  
Patrick Bonnay

Author(s):  
И.В. Бычков ◽  
А.В. Давыдов ◽  
Н.В. Нагул ◽  
С.А. Ульянов

Предложен подход к построению двухуровневой системы управления группировкой автономных подводных роботов (АПР) при обследовании придонной области. Для реализации элементарных поведений (режимов функционирования) группы на нижнем уровне предложены алгоритм отслеживания траектории, основанный на концепции виртуальной цели, и децентрализованный алгоритм управления формациями, базирующий на схеме лидер—ведомый. Синтез регуляторов, обеспечивающих требуемое поведение системы в различных режимах, выполнен с использованием векторных функций Ляпунова с учетом дискретности по времени и погрешностей измерений, неопределенности параметров модели АПР, а также ограничений на ресурсы управления. Для построения верхнего уровня управления, ответственного за переключение между режимами, используется теория супервизорного управления дискретно-событийными системами. Приведены результаты численных расчетов, демонстрирующих работоспособность предложенного подхода. The aim of the work is to develop a new approach, which includes a combination of original methods and algorithms, to build a multilevel control system for a group of autonomous underwater vehicles (AUV), which ensures non-stop performance of a complex mission to survey the near-bottom region. We propose a methodology, in which, considering the mission and the specific features of the underwater environment, a complex behavior of the group is divided into a set of elementary behaviors (operation modes), for which the following problems should be solved: path-following problem, formation control problem and the problem of cooperative avoidance of obstacles. Switching between modes occurs according to events that occur as a result of changing the model of the external environment and the current state of the group, and are implemented by the subsystem (DES). Lowlevel controllers tracking the required elementary behaviors of the group are designed with the help of the vector Lyapunov function technique which accounts sampled-data implementation of the exploited control schemes, measurement errors, uncertainties of AUV model’s parameters, and constraints on control actions. To construct a distributed DES-based upper-level controller we employ the theory of supervised control of DES. Some results of numerical computations and simulations for a group of identical large-sized AUVs are presented to demonstrate the operability of the proposed approach. Event-based cooperative control systems designed by the approach provide the level of intellectuality and sustainability of the group required to perform complex non-stop missions in real underwater conditions.


Author(s):  
Yongfu Li ◽  
Hao Zhu ◽  
Penghua Li ◽  
Min Cen ◽  
Yinguo Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document