Improving of the Sod Seeders SDK of Strip Grass Seed Sowing

Author(s):  
Viktor Saitov ◽  
Rustam Kurbanov ◽  
Sergey Demshin ◽  
Alexander Sozontov
Keyword(s):  
2022 ◽  
Vol 8 (1) ◽  
pp. 86-92
Author(s):  
S. Seifaddinov

Cultivation of soil on the slopes of mountainous areas leads to a decrease in organic matter and nutrients in the soil and severe soil erosion. Grazing is one of the main reasons for the degradation of pastures and natural landscape, which increases the sensitivity of the soil to erosion. Soil erosion, in turn, pollutes water by increasing its turbidity and sometimes causes atrophy due to leakage of phosphorus and nitrogen. An average of 30.6 quintals of green mass or 7.8 quintals of dry grass per hectare was produced in the variant of grass seed sowing (without fertilizer), compared to the control variant, in the variant of grass seed sowing + N60P60K40 this indicator averaged 39.9 centners/ha of green mass. or more than 15.0%, resulting in the production of 10.0 quintals of dry or 14.7% more dry grass. Experimental field studies to improve pastures have shown that the fodder produced in each of the tested variants; green mass and dry grass supply and their nutritional value were higher than control.


2013 ◽  
Vol 39 (12) ◽  
pp. 2228 ◽  
Author(s):  
Ye FENG ◽  
Feng GUO ◽  
Bao-Long LI ◽  
Jing-Jing MENG ◽  
Xin-Guo LI ◽  
...  

1965 ◽  
Vol 57 (6) ◽  
pp. 633-634 ◽  
Author(s):  
Dwight V. Peabody ◽  
H. M. Austenson
Keyword(s):  

1955 ◽  
Vol 47 (12) ◽  
pp. 559-563 ◽  
Author(s):  
Roderic E. Duller ◽  
J. S. Bubar ◽  
H. R. Fortmann ◽  
H. L. Carnahan

Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 466
Author(s):  
Qibo Tao ◽  
Mengjie Bai ◽  
Cunzhi Jia ◽  
Yunhua Han ◽  
Yanrong Wang

Irrigation and nitrogen (N) are two crucial factors affecting perennial grass seed production. To investigate the effects of irrigation and N rate on seed yield (SY), yield components, and water use efficiency (WUE) of Cleistogenes songorica (Roshevitz) Ohwi, an ecologically significant perennial grass, a four-year (2016–2019) field trial was conducted in an arid region of northwestern China. Two irrigation regimes (I1 treatment: irrigation at tillering stage; I2 treatment: irrigation at tillering, spikelet initiation, and early flowering stages) and four N rates (0, 60, 120, 180 kg ha−1) were arranged. Increasing amounts of both irrigation and N improved SY, evapotranspiration, WUE, and related yield components like fertile tillers m−2 (FTSM) and seeds spikelet−1. Meanwhile, no significant difference was observed between 120 and 180 kg N ha−1 treatments for most variables. The highest SY and WUE was obtained with treatment combination of I2 plus 120 kg N ha−1 with four-year average values of 507.3 kg ha−1 and 1.8 kg ha−1 mm−1, respectively. Path coefficient and contribution analysis indicated that FTSM was the most important yield component for SY, with direct path coefficient and contribution coefficient of 0.626 and 0.592. Overall, we recommend I2 treatment (three irrigations) together with 120 kg N ha−1 to both increase SY and WUE, especially in arid regions. Future agronomic managements and breeding programs for seed should mainly focus on FTSM. This study will enable grass seed producers, plant breeders, and government program directors to more effectively target higher SY of C. songorica.


Author(s):  
S. M. Khot ◽  
Praseed Kumar ◽  
Nitesh P. Yelve ◽  
Jabez James ◽  
Atul Shenoy ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document