Effects of Single-seed Sowing on Root Growth, Root-shoot Ratio, and Yield inPeanut (Arachis hypogacaL.)

2013 ◽  
Vol 39 (12) ◽  
pp. 2228 ◽  
Author(s):  
Ye FENG ◽  
Feng GUO ◽  
Bao-Long LI ◽  
Jing-Jing MENG ◽  
Xin-Guo LI ◽  
...  
1990 ◽  
Vol 20 (11) ◽  
pp. 1714-1719 ◽  
Author(s):  
George A. Schier ◽  
Carolyn J. McQuattie ◽  
Keith F. Jensen

Newly germimated pitch pine (Pinusrigida Mill.) seedlings inoculated with a mycorrhizal fungus (Pisolithustinctorius (Pers.) Coker & Couch) were grown for 13 weeks in sand irrigated with nutrient solution (pH 4.0) containing 0, 12.5, 25, 50, or 100 mg/L of aluminum (Al) in growth chambers fumigated with 0, 50, 100, or 200 ppb ozone. Increasing the concentration of ozone or Al caused increasing reductions in needle length, seedling height, and biomass of needles, stems, and roots. Significant ozone × Al interactions indicated that ozone and Al were interacting synergistically in reducing growth. Effect of treatments on the root/shoot ratio demonstrated that shoot growth was more sensitive to Al than root growth, whereas root growth was more sensitive to ozone. The concentration of most mineral elements (P, K, Ca, Mg, Mn, Cu, Zn) in needles was reduced by ozone or Al. Iron was the only element that increased with increasing concentrations of ozone or Al.


2020 ◽  
Vol 234 ◽  
pp. 106120 ◽  
Author(s):  
Jiangtao Wang ◽  
Gangfeng Du ◽  
Jingshan Tian ◽  
Yali Zhang ◽  
Chuangdao Jiang ◽  
...  

HortScience ◽  
1991 ◽  
Vol 26 (10) ◽  
pp. 1284-1286 ◽  
Author(s):  
James H. Keithly ◽  
Daniel P. Jones ◽  
Henry Yokoyama

The growth-enhancing property of DCPTA was tested on transplanted seedlings of Brassolaeliocattleya × Hort. (Blc. Bryce Canyon × Lc. Pirate King), Dendrobium × Blume. Hickham Deb, Epidendrum radicans Pav. ex Lindl., Lueliocattleya × Rolfe Prism Palette `The Clown', and Phalaenopsis × Blume. [Pink Zebra × (Jutta Brungor × Music)]. After 3 to 6 months of greenhouse growth, plants treated with 30 μm DCPTA produced a 2- to 3-fold increase in root growth compared to the controls. Shoot growth, root: shoot ratio, and the survival of DCPTA-treated plants were increased significantly when compared with controls. Chemical name used: 2-(3,4-dichlorophenoxy)triethylamine (DCPTA).


2011 ◽  
Vol 62 (5) ◽  
pp. 367 ◽  
Author(s):  
P. R. Ward ◽  
J. A. Palta ◽  
H. A. Waddell

Perennial plants such as lucerne are now widely acknowledged as one means of controlling the expansion of dryland salinity in southern Australia. However, their inclusion in farming systems is limited by poor seedling vigour, thought to be associated with greater allocation of biomass to perennating organs in roots, and poor adaptation to some soils and climatic conditions in south-western Australia. For this reason, interest in other perennial options such as perennial wheat is increasing. In this research we compared early (29-day) seedling growth and root : shoot ratios for annual and perennial medics (Medicago truncatula and M. sativa), and for annual and perennial wheat (Triticum aestivum and Triticum × Agropyron cross). For the medics, the annual reached the 6-leaf stage after 29 days and produced more root and shoot biomass than lucerne (4-leaf stage after 29 days), but there was no difference in root : shoot ratio or depth of root growth. For wheat, there were no differences in root growth, shoot growth, or root : shoot ratio between the annual and perennial lines (Zadoks growth stages 23 and 21, respectively, after 29 days). The poor competitive performance of M. sativa seedlings relative to M. truncatula was not due to changed allocation of biomass to shoots, but was related more to seed size (2.7 and 5.0 mg, respectively). This does not seem to occur to the same extent in perennial wheat lines, suggesting that their seedling performance may be more competitive.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Mazhar H. Tunio ◽  
Jianmin Gao ◽  
Imran A. Lakhiar ◽  
Kashif A. Solangi ◽  
Waqar A. Qureshi ◽  
...  

The atomized nutrient solution droplet sizes and spraying intervals can impact the chemical properties of the nutrient solution, biomass yield, root-to-shoot ratio and nutrient uptake of aeroponically cultivated plants. In this study, four different nozzles having droplet sizes N1 = 11.24, N2 = 26.35, N3 = 17.38 and N4 = 4.89 µm were selected and misted at three nutrient solution spraying intervals of 30, 45 and 60 min, with a 5 min spraying time. The measured parameters were power of hydrogen (pH) and electrical conductivity (EC) values of the nutrient solution, shoot and root growth, ratio of roots to shoots (fresh and dry), biomass yield and nutrient uptake. The results indicated that the N1 presented significantly lower changes in chemical properties than those of N2, N3 and N4, resulting in stable lateral root growth and increased biomass yield. Also, the root-to-shoot ratio significantly increased with increasing spraying interval using N1 and N4 nozzles. The N1 nozzle also revealed a significant effect on the phosphorous, potassium and magnesium uptake by the plants misted at proposed nutrient solution spraying intervals. However, the ultrasonic nozzle showed a nonsignificant effect on all measured parameters with respect to spraying intervals. In the last, this research experiment validates the applicability of air-assisted nozzle (N1) misting at a 30-min spraying interval and 5 min of spraying time for the cultivation of butter-head lettuce in aeroponic systems.


1965 ◽  
Vol 7 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Miroslav Penka
Keyword(s):  

2021 ◽  
Author(s):  
Xuhui Zhou ◽  
Lingyan Zhou ◽  
Yanghui He ◽  
Yuling Fu ◽  
Zhenggang Du ◽  
...  

Abstract Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Recent studies suggest that climate warming can differentially affect root and shoot biomass, and subsequently alter root: shoot ratio. However, warming effects on root: shoot ratio and their underlying drivers at a global scale remain unclear. Using a global synthesis of >300 studies, we here show that warming significantly increases biomass allocation to roots (by 13.1%), and two factors drive this response: mean annual precipitation of the site, and the type of mycorrhizal fungi associated with a plant. Warming-induced allocation to roots is greater in relatively drier habitats compared to shoots (by 15.1%), but lower in wetter sites (by 4.9%), especially for plants associated with arbuscular mycorrhizal fungi compared to ectomycorrhizal fungi. Root-biomass responses to warming predominantly determine the biomass allocation in terrestrial plants suggesting that warming can reinforce the importance of belowground resource uptake. Our study highlights that the wetness or dryness of a site and plants’ mycorrhizal associations strongly regulate terrestrial carbon cycle by altering biomass allocation strategies in a warmer world.


2011 ◽  
Vol 35 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Fernanda Carlota Nery ◽  
Hilton Morbeck de Oliveira ◽  
Amauri Alves de Alvarenga ◽  
Sara Dousseau ◽  
Evaristo Mauro de Castro ◽  
...  

Ecophysiological studies under semi-controlled conditions in nurseries and greenhouses are essential to enable the use of native species to recover degraded areas and for commercial planting. Talisia subalbens (Mart) Radlk, 'cascudo', is a native fruiting species of the Cerrado on the verge of extinction. The ecophysiological performance of this species was evaluated in nursery conditions under different levels of shading (full sunshine, 30%, 50% and 70%). Initial growth, biomass allocation, gas exchange and chlorophyll content of the plants were analyzed. Full sunshine cultivated plants showed a higher accumulation of total, shoot, and root dry biomass. There was no significant difference in the root/shoot ratio among the treatments. Seedlings cultivated under full sunshine and 30% shading showed higher values for height, basal diameter, and leaf area. Differences in stomata conductance and photosynthesis rate were not observed among the different shading levels. Plants cultivated under 70% of shading had higher contents of chlorophyll a, b, and total. During the initial phase with higher levels of radiation were fundamental for the development of T. subalbens seedlings.


2015 ◽  
Vol 33 (1) ◽  
pp. 01-12 ◽  
Author(s):  
F.F. CORRÊA ◽  
R.H. MADAIL ◽  
S. BARBOSA ◽  
M.P. PEREIRA ◽  
E.M. CASTRO ◽  
...  

The objective of this work was to evaluate the effects of the population density of Typha angustifolia plants in the anatomical and physiological characteristics. Plants were collected from populations of high density (over 50% of colonization capacity) and low density (less than 50% of colonization capacity) and cultivated under controlled greenhouse conditions. Plants from both populations were grown in plastic trays containing 4 L of nutritive solution for 60 days. At the end of this period, the relative growth rate, leaf area ratio, net assimilatory rate, root/shoot ratio, leaf anatomy, root anatomy, and catalase and ascorbate peroxidase activities were evaluated. Plants from high density populations showed increased growth rate and root/shoot ratio. Low density populations showed higher values of stomatal index and density in leaves, as well as increased palisade parenchyma thickness. Root epidermis and exodermis thickness as well as the aerenchyma proportion of high density populations were reduced, these plants also showed increased vascular cylinder proportion. Only catalase activity was modified between the high and low density populations, showing increased values in low density populations. Therefore, different Typha angustifolia plants show differences in its anatomy and physiology related to its origins on high and low density conditions. High density population plants shows increased growth capacity related to lower apoplastic barriers in root and this may be related to increased nutrient uptake capacity.


Sign in / Sign up

Export Citation Format

Share Document