Root biomass, root distribution and the fine-root growth dynamics of Quercus coccifera L. in the garrigue of southern France

Vegetatio ◽  
1990 ◽  
Vol 87 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Jochen Kummerow ◽  
Margarete Kummerow ◽  
Louis Trabaud
1986 ◽  
Vol 16 (6) ◽  
pp. 1360-1364 ◽  
Author(s):  
S. K. Srivastava ◽  
K. P. Singh ◽  
R. S. Upadhyay

Temporal variations in the spatial distribution of fine root mass were studied in a 19-year-old teak plantation in a dry tropical region. The soil block method was used to investigate fine root dynamics. Quantification of fine root mass was achieved in terms of live teak roots (separated by diameter), dead teak roots, teak root bark, herb roots, and fragmented soil organic matter. The annual mean fine root biomass was 5420 kg•ha−1 and the net production was 5460 kg•ha−1•year−1. The bulk of the root mass was distributed at a depth of 10–30 cm and roots ≤2 mm constituted one-half or more of the total root biomass. Maximum live root growth occurred during the rainy season. All root sizes showed similar bimodal seasonal patterns, but the maximum:minimum ratio generally declined with greater root size.


2004 ◽  
Vol 56 (1) ◽  
pp. 129-148 ◽  
Author(s):  
Carolyn S Wilcox ◽  
Joseph W Ferguson ◽  
George C.J Fernandez ◽  
Robert S Nowak

2020 ◽  
Vol 33 (2) ◽  
pp. 458-469
Author(s):  
EUNICE MAIA DE ANDRADE ◽  
GILBERTO QUEVEDO ROSA ◽  
ALDENIA MENDES MASCENA DE ALMEIDA ◽  
ANTONIO GIVANILSON RODRIGUES DA SILVA ◽  
MARIA GINA TORRES SENA

ABSTRACT Seasonally dry tropical forests (SDTF) usually present dry seasons of eight or more months. Considering the concerns about the resilience of SDTF to climate changes, the objective of this study was to evaluate the effect of the rainfall regime on fine root growth in a SDTF. The experiment started at the end of the wet season (July 2015), when fine roots were evaluated and ingrowth cores were implemented. The temporal growth of fine roots in the 0-30 cm soil layer was monitored, considering the 0-10, 10-20, and 20-30 cm sublayers, through six samplings from November 2015 to July 2017. The characteristics evaluated were fine root biomass, fine root length, fine root specific length, and fine root mean diameter. The significances of the root growths over time and space were tested by the Kruskal-Wallis test (p<0.05). Fine roots (Ø<2 mm) were separated and dried in an oven (65 °C) until constant weight. The root length was determined using the Giaroots software. The fine root biomass in July 2015 was 7.7±5.0 Mg ha-1 and the length was 5.0±3.2 km m-2. Fine root growth in SDTF is strongly limited by dry periods, occurring decreases in biomass and length of fine roots in all layers evaluated. Fine root growth occurs predominantly in rainy seasons, with fast response of the root system to rainfall events, mainly in root length.


1982 ◽  
Vol 65 (2) ◽  
pp. 193-201 ◽  
Author(s):  
J. Kummerow ◽  
M. Kummerow ◽  
W. Souza da Silva

Rhizosphere ◽  
2021 ◽  
pp. 100415
Author(s):  
Wanderlei Bieluczyk ◽  
Marisa de Cássia Piccolo ◽  
Marcos Gervasio Pereira ◽  
George Rodrigues Lambais ◽  
Moacir Tuzzin de Moraes ◽  
...  

2020 ◽  
Author(s):  
Dan-Dan Li ◽  
Hong-Wei Nan ◽  
Chun-Zhang Zhao ◽  
Chun-Ying Yin ◽  
Qing Liu

Abstract Aims Competition, temperature, and nutrient are the most important determinants of tree growth in the cold climate on the eastern Tibetan Plateau. Although many studies have reported their individual effects on tree growth, little is known about how the interactions of competition with fertilization and temperature affect root growth. We aim to test whether climate warming and fertilization promote competition and to explore the functional strategies of Picea asperata in response to the interactions of these factors. Methods We conducted a paired experiment including competition and non-competition treatments under elevated temperature (ET) and fertilization. We measured root traits, including the root tip number over the root surface (RTRS), the root branching events over the root surface (RBRS), the specific root length (SRL), the specific root area (SRA), the total fine root length and area (RL and RA), the root tips (RT) and root branching events (RB). These root traits are considered to be indicators of plant resource uptake capacity and root growth. The root biomass and the nutrient concentrations in the roots were also determined. Important Findings The results indicated that ET, fertilization and competition individually enhanced the nitrogen (N) and potassium (K) concentrations in fine roots, but they did not affect fine root biomass or root traits, including RL, RT, RA and RB. However, both temperature and fertilization, as well as their interaction, interacting with competition increased RL, RA, RT, RB, and nutrient uptake. In addition, the SRL, SRA, RTRS and RBRS decreased under fertilization, the interaction between temperature and competition decreased SRL and SRA, while the other parameters were not affected by temperature or competition. These results indicate that Picea asperata maintains a conservative nutrient strategy in response to competition, climate warming, fertilization, and their interactions. Our results improve our understanding of the physiological and ecological adaptability of trees to global change.


Author(s):  
Bengt Torssell ◽  
Henrik Eckersten ◽  
Anneli Lundkvist ◽  
Theo Verwijst

2007 ◽  
Vol 246 (2-3) ◽  
pp. 186-195 ◽  
Author(s):  
Sergio Luis de Miranda Mello ◽  
José Leonardo de Moraes Gonçalves ◽  
José Luiz Gava

Sign in / Sign up

Export Citation Format

Share Document