fine root growth
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kyotaro Noguchi ◽  
Yojiro Matsuura ◽  
Tomoaki Morishita ◽  
Jumpei Toriyama ◽  
Yongwon Kim

Permafrost forests play an important role in the global carbon budget due to the huge amounts of carbon stored below ground in these ecosystems. Although fine roots are considered to be a major pathway of belowground carbon flux, separate contributions of overstory trees and understory shrubs to fine root dynamics in these forests have not been specifically characterized in relation to permafrost conditions, such as active layer thickness. In this study, we investigated fine root growth and morphology of trees and understory shrubs using ingrowth cores with two types of moss substrates (feather- and Sphagnum mosses) in permafrost black spruce (Picea mariana) stands along a north-facing slope in Interior Alaska, where active layer thickness varied substantially. Aboveground biomass, litterfall production rate, and fine root mass were also examined. Results showed that aboveground biomass, fine root mass, and fine root growth of black spruce trees tended to decrease downslope, whereas those of understory Ericaceae shrubs increased. Belowground allocation (e.g., ratio of fine root growth/leaf litter production) increased downslope in both of black spruce and understory plants. These results suggested that, at a lower slope, belowground resource availability was lower than at upper slope, but higher light availability under open canopy seemed to benefit the growth of the understory shrubs. On the other hand, understory shrubs were more responsive to the moss substrates than black spruce, in which Sphagnum moss substrates increased fine root growth of the shrubs as compared with feather moss substrates, whereas the effect was unclear for black spruce. This is probably due to higher moisture contents in Sphagnum moss substrates, which benefited the growth of small diameter (high specific root length) fine roots of understory shrubs. Hence, the contribution of understory shrubs to fine root growth was greater at lower slope than at upper slope, or in Sphagnum than in feather-moss substrates in our study site. Taken together, our data show that fine roots of Ericaceae shrubs are a key component in belowground carbon flux at permafrost black spruce forests with shallow active layer and/or with Sphagnum dominated forest floor.


Rhizosphere ◽  
2021 ◽  
pp. 100415
Author(s):  
Wanderlei Bieluczyk ◽  
Marisa de Cássia Piccolo ◽  
Marcos Gervasio Pereira ◽  
George Rodrigues Lambais ◽  
Moacir Tuzzin de Moraes ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Victor Vazquez-Carrasquer ◽  
Anne Laperche ◽  
Christine Bissuel-Bélaygue ◽  
Michaël Chelle ◽  
Céline Richard-Molard

Maintaining seed yield under low N inputs is a major issue for breeding, which requires thoroughly exploiting the genetic diversity of processes related to Nitrogen Use Efficiency (NUE). However, dynamic analysis of processes underlying genotypic variations in NUE in response to N availability from sowing to harvest are scarce, particularly at the whole-plant scale. This study aimed to dynamically decipher the contributions of Nitrogen Uptake Efficiency (NUpE) and Nitrogen Utilization Efficiency (NUtE) to NUE and to identify traits underlying NUpE genetic variability throughout the growth cycle of rapeseed. Three experiments were conducted under field-like conditions to evaluate seven genotypes under two N conditions. We developed NUE_DM (ratio of total plant biomass to the amount of N available) as a new proxy of NUE at harvest, valid to discriminate genotypes from the end of inflorescence emergence, and N conditions as early as the beginning of stem elongation. During autumn growth, NUpE explained up to 100% of variations in NUE_DM, validating the major role of NUpE in NUE shaping. During this period, under low N conditions, up to 53% of the plant nitrogen was absorbed and NUpE genetic variability resulted not from differences in Specific N Uptake but in fine-root growth. NUtE mainly contributed to NUE_DM genotypic variation during the reproductive phase under high-N conditions, but NUpE contribution still accounted for 50–75% after flowering. Our study highlights for the first time NUpE and fine-root growth as important processes to optimize NUE, which opens new prospects for breeding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saki Fujita ◽  
Kyotaro Noguchi ◽  
Takeshi Tange

The increase of waterlogged environments at forests and urban greenery is of recent concern with the progress of climate change. Under waterlogging, plant roots are exposed to hypoxic conditions, which strongly affect root growth and function. However, its impact is dependent on various factors, such as waterlogging depth. Therefore, our objective is to elucidate effects of different waterlogging depths on Pinus thunbergii Parl., which is widely used for afforestation, especially at coastal forests. We conducted an experiment to examine growth and morphology of fine roots and transpiration using 2-year-old seedlings under three treatments, (1) control (no waterlogging), (2) partial waterlogging (partial-WL, waterlogging depth = 15 cm from the bottom), and (3) full waterlogging (full-WL, waterlogging depth = from the bottom to the soil surface, 26 cm). As a result, fine root growth and transpiration were both significantly decreased at full-WL. However, for partial-WL, fine root growth was significantly increased compared to control and full-WL at the top soil, where it was not waterlogged. Additionally, transpiration which had decreased after 4 weeks of waterlogging showed no significant difference compared to control after 8 weeks of waterlogging. This recovery is to be attributed to the increase in fine root growth at non-waterlogged top soil, which compensated for the damaged roots at the waterlogged bottom soil. In conclusion, this study suggests that P. thunbergii is sensitive to waterlogging; however, it can adapt to waterlogging by plastically changing the distribution of fine root growth.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jennifer M. Withington ◽  
Marc Goebel ◽  
Bartosz Bułaj ◽  
Jacek Oleksyn ◽  
Peter B. Reich ◽  
...  

Long-term minirhizotron observations of absorptive fine roots provide insights into seasonal patterns of belowground root production and carbon dynamics. Our objective was to compare root dynamics over time across mature individuals of 11 temperate trees species: five evergreen and six deciduous. We analyzed the timing and growth on 1st-and 2nd-order roots in minirhizotron images down to a vertical depth of 35 cm, as well as monthly and total annual length production. Production patterns were related to total annual precipitation of the actual and previous year of root production over 6 years. The main or largest peak of annual fine-root production occurred between June and September for almost all species and years. In most years, when peaks occurred, the timing of peak root production was synchronized across all species. A linear mixed model revealed significant differences in monthly fine-root length production across species in certain years (species x year, P < 0.0001), which was strongly influenced by three tree species. Total annual root production was much higher in 2000–2002, when there was above-average rainfall in the previous year, compared with production in 2005–2007, which followed years of lower-than-average rainfall (2003–2006). Compared to the wetter period all species experienced a decline of at least 75% in annual production in the drier years. Total annual root length production was more strongly associated with previous year’s (P < 0.001) compared with the actual year’s precipitation (P = 0.003). Remarkably similar timing of monthly absorptive fine-root growth can occur across multiple species of diverse phylogeny and leaf habit in a given year, suggesting a strong influence of extrinsic factors on absorptive fine-root growth. The influence of previous year precipitation on annual absorptive fine-root growth underscores the importance of legacy effects in biological responses and suggests that a growth response of temperate trees to extreme precipitation or drought events can be exacerbated across years.


2020 ◽  
Vol 117 (30) ◽  
pp. 17627-17634
Author(s):  
Avni Malhotra ◽  
Deanne J. Brice ◽  
Joanne Childs ◽  
Jake D. Graham ◽  
Erik A. Hobbie ◽  
...  

Belowground climate change responses remain a key unknown in the Earth system. Plant fine-root response is especially important to understand because fine roots respond quickly to environmental change, are responsible for nutrient and water uptake, and influence carbon cycling. However, fine-root responses to climate change are poorly constrained, especially in northern peatlands, which contain up to two-thirds of the world’s soil carbon. We present fine-root responses to warming between +2 °C and 9 °C above ambient conditions in a whole-ecosystem peatland experiment. Warming strongly increased fine-root growth by over an order of magnitude in the warmest treatment, with stronger responses in shrubs than in trees or graminoids. In the first year of treatment, the control (+0 °C) shrub fine-root growth of 0.9 km m−2y−1increased linearly by 1.2 km m−2y−1(130%) for every degree increase in soil temperature. An extended belowground growing season accounted for 20% of this dramatic increase. In the second growing season of treatment, the shrub warming response rate increased to 2.54 km m−2°C−1. Soil moisture was negatively correlated with fine-root growth, highlighting that drying of these typically water-saturated ecosystems can fuel a surprising burst in shrub belowground productivity, one possible mechanism explaining the “shrubification” of northern peatlands in response to global change. This previously unrecognized mechanism sheds light on how peatland fine-root response to warming and drying could be strong and rapid, with consequences for the belowground growing season duration, microtopography, vegetation composition, and ultimately, carbon function of these globally relevant carbon sinks.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 552
Author(s):  
Saki Fujita ◽  
Kyotaro Noguchi ◽  
Takeshi Tange

The increase of waterlogged environments is of recent concern due to changes in precipitation regimes and the frequent occurrence of extreme rainfall events. Therefore, it is necessary to comprehend the effects and responses of waterlogging for a better understanding of forests and urban afforestation under changing environments. We investigated root responses of five Japanese afforestation species (Pinus thunbergii, Acer mono, Quercus serrata, Alnus hirsuta and Fraxinus mandshurica) to waterlogging. Potted seedlings grown under natural conditions were waterlogged at soil-surface level for 2.5 months during the growing season. The in-growth core method was used to distinctively measure root growth. As a result, fine root growth during the waterlogging period was significantly decreased for P. thunbergii, A. mono and Q. serrata. Furthermore, root tissue density (RTD) of pre-existing roots was decreased, which suggests root damage such as partial root death and root decay. On the other hand, for A. hirsuta and F. mandshurica, fine root growth was not decreased under waterlogging. For A. hirsuta, although fine root growth continued at the top half, it was decreased at the bottom half. Root damage such as a decrease in RTD was observed for pre-existing roots. For F. mandshurica, root growth continued at the top and bottom half, and root damage of pre-existing roots was not observed at either the top or the bottom. From our results, it was suggested that P. thunbergii was most sensitive, followed by A. mono and Q. serrata. A. hirsuta and F. mandshurica were relatively tolerant; however, the most tolerant was F. mandshurica, as pre-existing roots were not damaged by waterlogging. Overall, root responses could be grouped into three groups: (1) P. thunbergii, A. mono, Q. serrata; (2) A. hirsuta; (3) F. mandshurica. The observed responses may reflect the species’ natural distributions.


Sign in / Sign up

Export Citation Format

Share Document