scholarly journals Fine root density and root biomass of two Douglas-fir stands on sandy soils in the Netherlands. 2. Periodicity of fine root growth and estimation of belowground carbon allocation

1991 ◽  
Vol 39 (1) ◽  
pp. 61-77
Author(s):  
A.F.M Olsthoorn ◽  
A. Tiktak
2020 ◽  
Vol 33 (2) ◽  
pp. 458-469
Author(s):  
EUNICE MAIA DE ANDRADE ◽  
GILBERTO QUEVEDO ROSA ◽  
ALDENIA MENDES MASCENA DE ALMEIDA ◽  
ANTONIO GIVANILSON RODRIGUES DA SILVA ◽  
MARIA GINA TORRES SENA

ABSTRACT Seasonally dry tropical forests (SDTF) usually present dry seasons of eight or more months. Considering the concerns about the resilience of SDTF to climate changes, the objective of this study was to evaluate the effect of the rainfall regime on fine root growth in a SDTF. The experiment started at the end of the wet season (July 2015), when fine roots were evaluated and ingrowth cores were implemented. The temporal growth of fine roots in the 0-30 cm soil layer was monitored, considering the 0-10, 10-20, and 20-30 cm sublayers, through six samplings from November 2015 to July 2017. The characteristics evaluated were fine root biomass, fine root length, fine root specific length, and fine root mean diameter. The significances of the root growths over time and space were tested by the Kruskal-Wallis test (p<0.05). Fine roots (Ø<2 mm) were separated and dried in an oven (65 °C) until constant weight. The root length was determined using the Giaroots software. The fine root biomass in July 2015 was 7.7±5.0 Mg ha-1 and the length was 5.0±3.2 km m-2. Fine root growth in SDTF is strongly limited by dry periods, occurring decreases in biomass and length of fine roots in all layers evaluated. Fine root growth occurs predominantly in rainy seasons, with fast response of the root system to rainfall events, mainly in root length.


2001 ◽  
Vol 31 (8) ◽  
pp. 1425-1436 ◽  
Author(s):  
Nate G McDowell ◽  
Nick J Balster ◽  
John D Marshall

Carbon allocation to fine roots and mycorrhizae constitute one of the largest carbon fluxes in forest ecosystems, but these fluxes are also among the most difficult to measure. We measured belowground carbon fluxes in two Pseudotsuga menziesii (Mirb.) Franco var. glauca stands. We used a carbon balance approach to estimate total belowground carbon allocation (TBCA) and carbon allocation to fine-root and mycorrhizal production (NPPfr). The stands differed in belowground biomass because of fertilization treatment 8 years prior. Annual soil flux was 856 and 849 g C·m–2·year–1 for the two stands. Annual root respiration equaled 269 and 333 g C·m–2·year–1 in the low- and high-biomass stand, respectively. TBCA equaled 733 and 710 g C·m–2·year–1 in the low- and high-biomass stand, respectively. Calculated NPPfr equaled 431 g C·m–2·year–1 in the low-biomass stand and 334 g C·m–2·year–1 in the high-biomass stand; equivalent to 59 and 47% of TBCA, respectively. Fine-root and mycorrhizal turnover equaled 1.8 and 0.8 year–1 in the low- and high-biomass stands, respectively. Belowground carbon allocation appeared to be distributed evenly between respiration and production despite differences in biomass and turnover. Sensitivity analysis indicated the NPPfr estimate is dependent foremost on the annual prediction of soil CO2 flux. The carbon balance approach provided a simple nonintrusive method for separating the belowground autotrophic and heterotrophic carbon budget.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kyotaro Noguchi ◽  
Yojiro Matsuura ◽  
Tomoaki Morishita ◽  
Jumpei Toriyama ◽  
Yongwon Kim

Permafrost forests play an important role in the global carbon budget due to the huge amounts of carbon stored below ground in these ecosystems. Although fine roots are considered to be a major pathway of belowground carbon flux, separate contributions of overstory trees and understory shrubs to fine root dynamics in these forests have not been specifically characterized in relation to permafrost conditions, such as active layer thickness. In this study, we investigated fine root growth and morphology of trees and understory shrubs using ingrowth cores with two types of moss substrates (feather- and Sphagnum mosses) in permafrost black spruce (Picea mariana) stands along a north-facing slope in Interior Alaska, where active layer thickness varied substantially. Aboveground biomass, litterfall production rate, and fine root mass were also examined. Results showed that aboveground biomass, fine root mass, and fine root growth of black spruce trees tended to decrease downslope, whereas those of understory Ericaceae shrubs increased. Belowground allocation (e.g., ratio of fine root growth/leaf litter production) increased downslope in both of black spruce and understory plants. These results suggested that, at a lower slope, belowground resource availability was lower than at upper slope, but higher light availability under open canopy seemed to benefit the growth of the understory shrubs. On the other hand, understory shrubs were more responsive to the moss substrates than black spruce, in which Sphagnum moss substrates increased fine root growth of the shrubs as compared with feather moss substrates, whereas the effect was unclear for black spruce. This is probably due to higher moisture contents in Sphagnum moss substrates, which benefited the growth of small diameter (high specific root length) fine roots of understory shrubs. Hence, the contribution of understory shrubs to fine root growth was greater at lower slope than at upper slope, or in Sphagnum than in feather-moss substrates in our study site. Taken together, our data show that fine roots of Ericaceae shrubs are a key component in belowground carbon flux at permafrost black spruce forests with shallow active layer and/or with Sphagnum dominated forest floor.


Rhizosphere ◽  
2021 ◽  
pp. 100415
Author(s):  
Wanderlei Bieluczyk ◽  
Marisa de Cássia Piccolo ◽  
Marcos Gervasio Pereira ◽  
George Rodrigues Lambais ◽  
Moacir Tuzzin de Moraes ◽  
...  

2020 ◽  
Author(s):  
Dan-Dan Li ◽  
Hong-Wei Nan ◽  
Chun-Zhang Zhao ◽  
Chun-Ying Yin ◽  
Qing Liu

Abstract Aims Competition, temperature, and nutrient are the most important determinants of tree growth in the cold climate on the eastern Tibetan Plateau. Although many studies have reported their individual effects on tree growth, little is known about how the interactions of competition with fertilization and temperature affect root growth. We aim to test whether climate warming and fertilization promote competition and to explore the functional strategies of Picea asperata in response to the interactions of these factors. Methods We conducted a paired experiment including competition and non-competition treatments under elevated temperature (ET) and fertilization. We measured root traits, including the root tip number over the root surface (RTRS), the root branching events over the root surface (RBRS), the specific root length (SRL), the specific root area (SRA), the total fine root length and area (RL and RA), the root tips (RT) and root branching events (RB). These root traits are considered to be indicators of plant resource uptake capacity and root growth. The root biomass and the nutrient concentrations in the roots were also determined. Important Findings The results indicated that ET, fertilization and competition individually enhanced the nitrogen (N) and potassium (K) concentrations in fine roots, but they did not affect fine root biomass or root traits, including RL, RT, RA and RB. However, both temperature and fertilization, as well as their interaction, interacting with competition increased RL, RA, RT, RB, and nutrient uptake. In addition, the SRL, SRA, RTRS and RBRS decreased under fertilization, the interaction between temperature and competition decreased SRL and SRA, while the other parameters were not affected by temperature or competition. These results indicate that Picea asperata maintains a conservative nutrient strategy in response to competition, climate warming, fertilization, and their interactions. Our results improve our understanding of the physiological and ecological adaptability of trees to global change.


Author(s):  
Bengt Torssell ◽  
Henrik Eckersten ◽  
Anneli Lundkvist ◽  
Theo Verwijst

Sign in / Sign up

Export Citation Format

Share Document