Kelvin-Helmholtz waves observed by aircraft at different stages of their life-cycle in a low-level inversion

1978 ◽  
Vol 15 (1) ◽  
pp. 31-55 ◽  
Author(s):  
P. Mascart ◽  
H. Isaka ◽  
B. Guillemet
Keyword(s):  
1952 ◽  
Vol 33 (9) ◽  
pp. 373-379 ◽  
Author(s):  
Frank Gifford

A short series of unusually detailed temperature, humidity, and wind soundings to a height of about 750 mb., made at Silver Hill, Md. on the night of October 30th and 31st, 1950, and consisting of eight flights of specially modified radiosondes and 26 double-theodolite pilot balloon runs, is presented. The nocturnal breakdown of the ground inversion with steep wind gradients, a phenomenon first remarked by Durst in 1933, is here observed apparently to be associated with the sudden lowering of an upper (turbulence or subsidence) inversion. Alternative explanations for this are advanced, and implications for minimum temperature and stratus forecasting noted. The accuracy of the observations is discussed.


2007 ◽  
Vol 64 (4) ◽  
pp. 1365-1378 ◽  
Author(s):  
Erik N. Rasmussen ◽  
Jerry M. Straka

Abstract The life cycle of the 2 June 1995 Dimmitt, Texas, tornado cyclone, observed during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX), is described. The tornado cyclone here is defined as a significantly axisymmetric flow larger than the visible tornado and characterized by increasing angular momentum with increasing radius. Its life cycle included three phases with somewhat differing evolution of angular momentum, herein called intensifying, transition, and weakening. During the intensifying stage, the funnel and debris cloud gradually increased in size. The azimuthally averaged secondary circulation of the larger-scale tornado cyclone, as determined using high-resolution single-Doppler data obtained by a mobile radar, was primarily inward and upward, consistent with the presence of a wall cloud outside the tornado. The azimuthally averaged angular momentum increased monotonically away from the tornado, so inward advection allowed the angular momentum to increase slowly with time in part of the tornado cyclone. During the transition phase, downdrafts began to occur within the tornado cyclone. The transport of angular momentum by the secondary circulation nearly was offset by eddy flux convergence of angular momentum so that the azimuthally averaged angular momentum tendency was only weakly negative at most radii. The tornado was visually impressive during this stage, featuring a 400-m diameter debris cloud extending to cloud base, while the surrounding wall cloud shrank and eroded. During the weakening phase, the funnel and debris cloud gradually shrank, and the funnel went through a rope stage prior to disappearing. The weakening phase was characterized by extensive downdrafts at all radii outside the tornado, and large-scale near-ground outflow as observed by mobile mesonet systems in a portion of the tornado cyclone. The secondary circulation acted to transport smaller angular momentum downward from aloft, and outward along the ground. All terms of the angular momentum budget became negative throughout most of the low-level (0–800-m AGL) tornado cyclone during the weakening phase. Several hypotheses for this evolution are evaluated, including changes in water loading in the tornado cyclone, cooling of the near-ground air, and the distribution of tangential velocity with height with its concomitant influence on the nonhydrostatic vertical pressure gradient force.


Author(s):  
E. J. Bentz ◽  
C. B. Bentz ◽  
T. D. O’Hora

Abstract This paper provides a comparative assessment of low-level radioactive waste (LLW) life-cycle costs for U.S. commercial disposal facilities. This assessment includes both currently operational facilities and planned commercial facilities. After identifying the individual facility’s operational period, current or planned capacity, and historical disposal volumes (where applicable), the paper describes the respective facilities’ waste acceptance criteria, anticipated waste characteristics, and disposal technologies employed. A brief identification of key components of cost categories that constitute life-cycle cost for the disposal facilities is provided, as well as an identification of factors that affect life-cycle cost. A more specific comparison of certain life-cycle cost components for the disposal facilities is provided, with regard to U.S. LLW disposal volumes and characteristics. Similarities and differences in total life-cycle cost and life-cycle category-specific costs among the U.S. facilities are presented and discussed. The data presented reveals that: • No new LLW commercial disposal facilities have been sited in the U.S. since 1988, and that siting of LLW disposal facilities in the U.S. has become increasingly difficult and contentious, necessitating long lead times and significant up-front costs — without any certainty of success. • Overall, life-cycle costs for LLW disposal at U.S. commercial facilities have increased significantly over time, reflecting increased regulatory compliance requirements, state-imposed access fees and taxes, local community hosting incentive costs, and cost escalation inherent in delays in establishing facilities or modifying existing licensed facilities. • Life-cycle costs are also significantly affected by the nature of the engineered isolation technology employed, reflecting the geologic characteristics of the siting location and the activity levels of the wastes accepted. • Since many of the newly-planned facilities anticipate receiving lower total volumes with an increasingly greater percentage of higher activity wastes (than historical volumes disposed) and are to be sited in more ecologically sensitive geologic regions, they will require more comprehensive — and hence more expensive — engineered isolation technologies. As a result, currently planned facilities are anticipated to experience significantly higher total life-cycle costs than existing operational facilities.


2010 ◽  
Vol 138 (12) ◽  
pp. 4285-4304 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Yuqing Wang ◽  
Masaki Satoh ◽  
Tomoe Nasuno ◽  
Hiroaki Miura ◽  
...  

Abstract The Nonhydrostatic Icosahedral Atmospheric Model (NICAM), a global cloud-system-resolving model, successfully simulated the life cycle of Tropical Storm Isobel that formed over the Timor Sea in the austral summer of 2006. The multiscale interactions in the life cycle of the simulated storm were analyzed in this study. The large-scale aspects that affected Isobel’s life cycle are documented in this paper and the corresponding mesoscale processes are documented in a companion paper. The life cycle of Isobel was largely controlled by a Madden–Julian oscillation (MJO) event and the associated westerly wind burst (WWB). The MJO was found to have both positive and negative effects on the tropical cyclone intensity depending on the location of the storm relative to the WWB center associated with the MJO. The large-scale low-level convergence and high convective available potential energy (CAPE) downwind of the WWB center provided a favorable region to the cyclogenesis and intensification, whereas the strong large-scale stretching deformation field upwind of the WWB center may weaken the storm by exciting wavenumber-2 asymmetries in the eyewall and leading to the eyewall breakdown. Five stages are identified for the life cycle of the simulated Isobel: the initial eddy, intensifying, temporary weakening, reintensifying, and decaying stages. The initial eddy stage was featured by small-scale/mesoscale convective cyclonic vortices developed in the zonally elongated rainband organized in the preconditioned environment characterized by the WWB over the Java Sea associated with the onset of an MJO event over the East Indian Ocean. As the MJO propagated eastward and the cyclonic eddies moved southward into an environment with weak vertical shear and strong low-level cyclonic vorticity, a typical tropical cyclone structure developed over the Java Sea, namely the genesis of Isobel. Isobel experienced an eyewall breakdown and a temporary weakening when it was located upwind of the WWB center as the MJO propagated southeastward and reintensified as its eyewall reformed as a result of the axisymmetrization of an inward spiraling outer rainband that originally formed downwind of the WWB center. Finally Isobel decayed as it approached the northwest coast of Australia.


2016 ◽  
Author(s):  
Bianca Adler ◽  
Norbert Kalthoff ◽  
Leonhard Gantner

Abstract. We performed a high-resolution numerical simulation to study the life cycle of extensive low-level clouds which frequently form over southern West Africa during the monsoon season. This study was made in preparation for a field campaign in 2016 within the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project and focuses on an area around the city of Save in southern Benin. Nocturnal low-level clouds evolve a few hundred metres above the ground around the same level as a distinct low-level jet. Several processes are found to determine the spatio-temporal evolution of these clouds including (i) significant cooling of the nocturnal atmosphere due to horizontal advection with the south-westerly monsoon flow during the first half of the night, (ii) vertical cold air advection due to gravity waves leading to clouds in the wave crests and (iii) enhanced convergence and upward motion upstream of existing clouds that trigger new clouds. The latter is caused by an upward shift of the low-level jet in cloudy areas leading to horizontal convergence in the lower part and to horizontal divergence in the upper part of the cloud layer. Although this single case study hardly allows for a generalisation of the processes found, the results added to the optimisation of the measurements strategy for the field campaign and the observations will be used to the test the hypotheses for cloud formation resulting from this study.


2010 ◽  
Vol 138 (5) ◽  
pp. 1738-1766 ◽  
Author(s):  
Conrad L. Ziegler ◽  
Edward R. Mansell ◽  
Jerry M. Straka ◽  
Donald R. MacGorman ◽  
Donald W. Burgess

Abstract This study reports on the dynamical evolution of simulated, long-lived right-moving supercell storms in a high-CAPE, strongly sheared mesoscale environment, which initiate in a weakly capped region and subsequently move into a cold boundary layer (BL) and inversion region before dissipating. The storm simulations realistically approximate the main morphological features and evolution of the 22 May 1981 Binger, Oklahoma, supercell storm by employing time-varying inflow lateral boundary conditions for the storm-relative moving grid, which in turn are prescribed from a parent, fixed steady-state mesoscale analysis to approximate the observed inversion region to the east of the dryline on that day. A series of full life cycle storm simulations have been performed in which the magnitude of boundary layer coldness and the convective inhibition are varied to examine the ability of the storm to regenerate and sustain its main updraft as it moves into environments with increasing convective stability. The analysis of the simulations employs an empirical expression for the theoretical speed of the right-forward-flank outflow boundary relative to the ambient, low-level storm inflow that is consistent with simulated cold-pool boundary movement. The theoretical outflow boundary speed in the direction opposite to the ambient flow increases with an increasing cold-pool temperature deficit relative to the ambient BL temperature, and it decreases as ambient wind speed increases. The right-moving, classic (CL) phase of the simulated supercells is supported by increasing precipitation content and a stronger cold pool, which increases the right-moving cold-pool boundary speed against the constant ambient BL winds. The subsequent decrease of the ambient BL temperature with eastward storm movement decreases the cold-pool temperature deficit and reduces the outflow boundary speed against the ambient winds, progressing through a state of stagnation to an ultimate retrogression of the outflow boundary in the direction of the ambient flow. Onset of a transient, left-moving low-precipitation (LP) phase is initiated as the storm redevelops on the retrograding outflow boundary. The left-moving LP storm induces compensating downward motions in the inversion layer that desiccates the inflow, elevates the cloudy updraft parcel level of free convection (LFC), and leads to the final storm decay. The results demonstrate that inversion-region simulations support isolated, long-lived supercells. Both the degree of stratification and the coldness of the ambient BL regulate the cold-pool intensity and the strength and capacity of the outflow boundary to lift BL air through the LFC and thus regenerate convection, resulting in variation of supercell duration in the inversion region of approximately 1–2 h. In contrast, horizontally homogeneous conditions lacking an inversion region result in the development of secondary convection from the initial isolated supercell, followed by rapid upscale growth after 3 h to form a long-lived mesoscale convective system.


1991 ◽  
Vol 65 (12) ◽  
pp. 7016-7019 ◽  
Author(s):  
G F Rall ◽  
S Kupershmidt ◽  
X Q Lu ◽  
T C Mettenleiter ◽  
T Ben-Porat

2011 ◽  
Vol 139 (12) ◽  
pp. 3750-3764 ◽  
Author(s):  
Craig M. Smith ◽  
Eric D. Skyllingstad

Abstract Simulations are presented focusing on the role of temperature inversions in controlling the formation and strength of downslope wind storms. Three mechanisms are examined depending on the relative height of the inversion with respect to the mountain and the stability of vertically propagating mountain waves. For low-level inversions, flows are generated that closely resemble a reduced gravity shallow water hydraulic response with a large vertical displacement of the inversion on the lee side of the mountain. For higher-level inversion cases, simulated flows more closely followed a stratified hydraulic behavior with the inversion acting as a rigid reflective lid. In the third mechanism, downslope winds were forced by a self-induced critical layer located below the inversion height. The presence of the inversion in this case had little effect on the resulting downslope winds. Observations made on the Falkland Islands show that downslope windstorms may preferentially occur in early morning even without synoptic-scale changes in atmospheric structure. Most windstorms on the Falkland Islands generally have a short jet length; rare, longer jet length storms typically occur in conjunction with a strong low-level inversion. Idealized numerical experiments tend to produce a similar response depending on the presence of strong low-level inversion and surface cooling. Results suggest that surface heating can have significant control on the flow response by reducing the low-level inversion strength, or by changing the stratification and wind velocity below the inversion, thereby preventing a strong downslope windstorm.


Sign in / Sign up

Export Citation Format

Share Document