In vitro induction of cell-mediated immunity to murine leukemia cells

1978 ◽  
Vol 4 (3) ◽  
pp. 151-159 ◽  
Author(s):  
Eli Kedar ◽  
Maya Schwartzbach ◽  
Sarit Hefetz ◽  
Ziva Raanan
1978 ◽  
Vol 4 (3) ◽  
pp. 161-169 ◽  
Author(s):  
Eli Kedar ◽  
Ziva Raanan ◽  
Maya Schwartzbach

2016 ◽  
Vol 16 (12) ◽  
pp. 1615-1621 ◽  
Author(s):  
Erik Andrade-Jorge ◽  
Marycarmen Godínez-Victoria ◽  
Luvia Enid Sánchez-Torres ◽  
Luis Humberto Fabila-Castillo ◽  
José G. Trujillo-Ferrara

1974 ◽  
Vol 139 (5) ◽  
pp. 1154-1174 ◽  
Author(s):  
Seth E. Anderson ◽  
Jack S. Remington

Human macrophages derived from in vitro culture of peripheral blood monocytes were studied under a variety of conditions to determine their microbicidal capacity for the obligate intracellular protozoan, Toxoplasma gondii. The effect of macrophages on intracellular Toxoplasma was evaluated morphologically by light and phase microscopy and by autoradiography. When macrophages from dye test (DT)-negative or DT-positive individuals were infected with Toxoplasma in the presence of normal human serum, the organisms were able to multiply intracellularly with resultant destruction of the monolayer. Once organisms were intracellular, the presence of antibody-containing serum in the medium did not alter this inability of the macrophages to kill Toxoplasma. However, when Toxoplasma were incubated in the presence of heat-inactivated DT-positive serum just before infection of the monolayers, the intracellular organisms were inhibited or killed by normal macrophages. Attempts were made to activate macrophages in vitro to kill Toxoplasma. Macrophages incubated in the presence of sensitized lymphocytes and Streptokinase-Streptodornase (SK-SD) or Toxoplasma lysate antigen (TLA) were found to kill Toxoplasma when compared to macrophages incubated in the presence of lymphocytes from DT-negative individuals and TLA or lymphocytes alone. Thus, in vitro induction of resistance (both specifically and nonspecifically) in human macrophages was accomplished by culturing these cells in the presence of specifically sensitized lymphocytes and antigen. These results suggest that, as in the mouse model, activated human macrophages have the ability to inhibit or kill intracellular Toxoplasma and that these cells may be important as effector cells in cell-mediated immunity (CMI) to toxoplasmosis in man.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jai-Sing Yang ◽  
Chia-Chun Wu ◽  
Chao-Lin Kuo ◽  
Yu-Hsuan Lan ◽  
Chin-Chung Yeh ◽  
...  

We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced bySolanum lyratumextracts (SLE) or diosgenin in WEHI-3 murine leukemia cellsin vitroand antitumor activityin vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and inducedG0/G1phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨm). SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α), anti-Fas ligand (FasL) mAb, and specific inhibitors of caspase-8 (z-IETD-fmk), caspase-9 (z-LEHD-fmk), and caspase-3 (z-DEVD-fmk) blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. Thein vivostudy demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-inducedG0/G1phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activityin vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future.


Sign in / Sign up

Export Citation Format

Share Document