Grid transformation for incorporating the Arctic in a global ocean model

1994 ◽  
Vol 10 (4-5) ◽  
pp. 241-247 ◽  
Author(s):  
Michael Eby ◽  
Greg Holloway
Keyword(s):  
2020 ◽  
Vol 221 (1) ◽  
pp. 603-616
Author(s):  
Shuang Yi ◽  
Kosuke Heki

SUMMARY Signal leakage between the land and ocean is a challenge in using Gravity Recovery and Climate Experiment (GRACE) observation data to study global mass redistributions. Although the leakage occurs in both directions, more attention has been paid to the land-to-ocean leakage and less to the ocean-to-land leakage. Here, we show that the ocean-to-land leakage is non-uniform and non-negligible and propose a new forward modelling method to fully consider bi-directional leakages with the help of the global Ocean ReAnalysis System ORAS5. This observation-driven model could significantly reduce the variations in ocean grids and thus decrease the ocean-to-land leakage. The results with different treatment of the ocean signal leakage are compared. We find that failing to consider the ocean-to-land leakage will cause an underestimation of ∼20 per cent in the seasonal variation and will introduce a bias of several giga-tons in the secular trend. Although the uniform and non-uniform model have similar results in the global average of seasonal mass variations, the non-uniform ocean model is necessary in most places, especially near the Arctic Ocean, the Sea of Japan and the Gulf of Carpentaria. Despite these achievements, we also point out that there is still much room for improvement in ocean mass models, particularly in long-term trends. Our results indicate the importance of the ocean-to-land leakage correction in the mass estimation in coastal land areas using the GRACE data.


2011 ◽  
Vol 41 (11) ◽  
pp. 2187-2210 ◽  
Author(s):  
Timothy McGeehan ◽  
Wieslaw Maslowski

Abstract Freshwater exiting the Arctic Ocean through the Canadian Arctic Archipelago (CAA) has been shown to affect meridional overturning circulation and thereby the global climate system. However, because of constraints of spatial resolution in most global ocean models, neither the flow of low salinity water through the CAA to the Labrador Sea nor the eddy activity that may transport freshwater from the shelf to areas of open ocean convection can be directly simulated. To address these issues, this study uses a high-resolution ice–ocean model of the pan-Arctic region with a realistic CAA and forced with realistic atmospheric data. This model resolves conditions in the Arctic Ocean upstream of the Labrador Sea and is coupled to a thermodynamic–dynamic sea ice model that responds to the atmospheric forcing. The major shelf–basin exchange of liquid freshwater occurs south of Hamilton Bank, whereas the largest ice flux occurs in the northwest of the basin. Freshwater flux anomalies entering the Labrador Sea through Davis Strait do not immediately affect deep convection. Instead, eddies acting on shorter time scales can move freshwater to locations of active convection and halt the process. Convection is modulated by the position of the ice edge, highlighting the critical need for a coupled ice–ocean model. Finally, the size of eddies and the short duration of events demonstrate the need for high resolution, both spatial and temporal.


2014 ◽  
Vol 27 (12) ◽  
pp. 4359-4370 ◽  
Author(s):  
Yoshiki Komuro

Abstract The impact of oceanic vertical mixing on the near-surface vertical structure of the Arctic Ocean is investigated in a global ice–ocean model with a passive tracer. Lowering surface background vertical diffusivity and ignoring the effects of surface wave breaking under sea ice improves the model simulation of the horizontal Arctic river water distribution. This improvement is largely responsible for the freshening of the Arctic surface salinity in the model. Although these modifications in the model vertical mixing scheme are applied over the whole global ocean, the change in the surface salinity over the Arctic is larger than that in the rest of the global ocean by one to two orders of magnitude. In contrast, when a reduced background vertical diffusivity is used at all depths, the Arctic vertical salinity stratification is improved below the surface as well as in the surface layer, but the vertical structure and deep circulation in the rest of the global ocean are also strongly affected. Weaker surface vertical mixing in the Arctic Ocean also causes sea ice to thicken even without changes in the parameters for the sea ice component.


2001 ◽  
Vol 33 ◽  
pp. 567-576 ◽  
Author(s):  
Ye. Aksenov ◽  
A.C. Coward

AbstractTo investigate the Arctic Ocean Circulation, results from a high-resolution fully global ocean model have been analyzed. The results come from two runs of the Ocean Circulation and Climate Advanced Modelling project (OCCAM) model, developed and run by the Southampton Oceanography Centre, at 1/4° × 1/4° and 1/8° × 1/8° resolution. The model is based on the Bryan-Semtner-Cox model and has 36 vertical levels. Enhancements include a free surface, an improved advection scheme and an improved treatment of the surface fresh-water flux. The model is forced with a monthly European Centre for Medium-range Weather Forecasts wind-stress climatology. It reproduces many of the fine-scale features found in the Arctic Ocean. The analysis concentrates on several of the key features, including the highly energetic eddy system in the western part of the Beaufort Sea, East Greenland West and Spitsbergen Currents and the detailed structure of the marginal currents along the Siberian and Canadian coasts. Much of the paper is focused on the water transport through the Bering and Fram Straits and through the Canadian Archipelago. Comparisons of the model net fluxes through the straits against observations are presented. The analyses of the results demonstrate the ability of the fine-resolution model to simulate features such as small-scale eddies and jets, which have some agreement with the limited observations available.


Author(s):  
Bian He ◽  
Xiaoqi Zhang ◽  
Anmin Duan ◽  
Qing Bao ◽  
Yimin Liu ◽  
...  

AbstractLarge-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. The basic model responses of the surface air temperature (SAT) and precipitation were documented. The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes. The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes, which is similar to the results from the combined forcing of SST and SIC. However, the change in global precipitation is dominated by the changes in the global SST rather than SIC, partly because tropical precipitation is mainly driven by local SST changes. The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members. The relative roles of SST and SIC, together with their combined influence on Arctic amplification, are also discussed. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.


1998 ◽  
Vol 120 (2) ◽  
pp. 77-84 ◽  
Author(s):  
I. V. Polyakov ◽  
I. Yu. Kulakov ◽  
S. A. Kolesov ◽  
N. Eu. Dmitriev ◽  
R. S. Pritchard ◽  
...  

A fully prognostic coupled ice-ocean model is described. The ice model is based on the elastic-plastic constitutive law with ice mass and compactness described by distribution functions. The ice thermodynamics model is applied individually to each ice thickness category. Advection of the ice partial mass and concentrations is parameterized by a fourth-order algorithm that conserves monotonicity of the solution. The ocean is described as a three-dimensional time-dependent baroclinic model with free surface. The coupled model is applied to establish the Arctic Ocean seasonal climatology using fully prognostic models for ice and ocean. Results reflect the importance of the ice melting/freezing in the formation of the thermohaline structure of the upper ocean layer.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2021 ◽  
Author(s):  
Angelina Cassianides ◽  
Camillie Lique ◽  
Anton Korosov

<p>In the global ocean, mesoscale eddies are routinely observed from satellite observation. In the Arctic Ocean, however, their observation is impeded by the presence of sea ice, although there is a growing recognition that eddy may be important for the evolution of the sea ice cover. In this talk, we will present a new method of surface ocean eddy detection based on their signature in sea ice vorticity retrieved from Synthetic Aperture Radar (SAR) images. A combination of Feature Tracking and Pattern Matching algorithm is used to compute the sea ice drift from pairs of SAR images. We will mostly focus on the case of one eddy in October 2017 in the marginal ice zone of the Canadian Basin, which was sampled by mooring observations, allowing a detailed description of its characteristics. Although the eddy could not be identified by visual inspection of the SAR images, its signature is revealed as a dipole anomaly in sea ice vorticity, which suggests that the eddy is a dipole composed of a cyclone and an anticyclone, with a horizontal scale of 80-100 km and persisted over a week. We will also discuss the relative contributions of the wind and the surface current to the sea ice vorticity. We anticipate that the robustness of our method will allow us to detect more eddies as more SAR observations become available in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document