Biondi bodies in the choroid plexus epithelium of the human brain

1986 ◽  
Vol 244 (1) ◽  
Author(s):  
A.I. Kiktenko
Author(s):  
B. Van Deurs ◽  
J. K. Koehler

The choroid plexus epithelium constitutes a blood-cerebrospinal fluid (CSF) barrier, and is involved in regulation of the special composition of the CSF. The epithelium is provided with an ouabain-sensitive Na/K-pump located at the apical surface, actively pumping ions into the CSF. The choroid plexus epithelium has been described as “leaky” with a low transepithelial resistance, and a passive transepithelial flux following a paracellular route (intercellular spaces and cell junctions) also takes place. The present report describes the structural basis for these “barrier” properties of the choroid plexus epithelium as revealed by freeze fracture.Choroid plexus from the lateral, third and fourth ventricles of rats were used. The tissue was fixed in glutaraldehyde and stored in 30% glycerol. Freezing was performed either in liquid nitrogen-cooled Freon 22, or directly in a mixture of liquid and solid nitrogen prepared in a special vacuum chamber. The latter method was always used, and considered necessary, when preparations of complementary (double) replicas were made.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150945 ◽  
Author(s):  
Nathalie Strazielle ◽  
Rita Creidy ◽  
Christophe Malcus ◽  
José Boucraut ◽  
Jean-François Ghersi-Egea

2007 ◽  
Vol 292 (2) ◽  
pp. C795-C806 ◽  
Author(s):  
Robert D. Huber ◽  
Bo Gao ◽  
Marguerite-Anne Sidler Pfändler ◽  
Wenting Zhang-Fu ◽  
Simone Leuthold ◽  
...  

In the present study we isolated two splice variants of organic anion transporting polypeptide 3A1 (OATP3A1_v1 and OATP3A1_v2) from human brain. OATP3A1_v2 lacks 18 amino acids (aa) at the COOH-terminal end (692 aa) but is otherwise similar in sequence to OATP3A1_v1 (710 aa). OATP3A1_v1 exhibits a wide tissue distribution, with expression in testis, various brain regions, heart, lung, spleen, peripheral blood leukocytes, and thyroid gland, whereas OATP3A1_v2 is predominantly expressed in testis and brain. On the cellular and subcellular levels OATP3A1_v1 could be immunolocalized in testicular germ cells, the basolateral plasma membrane of choroid plexus epithelial cells, and neuroglial cells of the gray matter of human frontal cortex. Immunolocalization of OATP3A1_v2 included Sertoli cells in testis, apical and/or subapical membranes in choroid plexus epithelial cells, and neurons (cell bodies and axons) of the gray and white matter of human frontal cortex. The rodent ortholog Oatp3a1 was also widely distributed in rat brain, and its localization included somatoneurons as well as astroglial cells. Transport studies in cRNA-injected Xenopus laevis oocytes and in stably transfected Chinese hamster ovary FlpIn cells revealed a similar broad substrate specificity for both splice variants. Transported substrates include prostaglandin (PG)E1 and PGE2, thyroxine, and the cyclic oligopeptides BQ-123 (endothelin receptor antagonist) and vasopressin. These studies provide further evidence for the involvement of OATPs in oligopeptide transport. They specifically suggest that OATP3A1 variants might be involved in the regulation of extracellular vasopressin concentration in human brain and thus might influence the neuromodulation of neurotransmission by cerebral neuropeptides such as vasopressin.


2019 ◽  
Vol 40 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Ken Yanase ◽  
Naoya Uemura ◽  
Yoichi Chiba ◽  
Ryuta Murakami ◽  
Ryuji Fujihara ◽  
...  

2007 ◽  
Vol 292 (4) ◽  
pp. C1409-C1416 ◽  
Author(s):  
Boglarka Banizs ◽  
Peter Komlosi ◽  
Mark O. Bevensee ◽  
Erik M. Schwiebert ◽  
Phillip D. Bell ◽  
...  

Tg737 orpk mice have defects in cilia assembly and develop hydrocephalus in the perinatal period of life. Hydrocephalus is progressive and is thought to be initiated by abnormal ion and water transport across the choroid plexus epithelium. The pathology is further aggravated by the slow and disorganized beating of motile cilia on ependymal cells that contribute to decreased cerebrospinal fluid movement through the ventricles. Previously, we demonstrated that the hydrocephalus phenotype is associated with a marked increase in intracellular cAMP levels in choroid plexus epithelium, which is known to have regulatory effects on ion and fluid movement in many secretory epithelia. To evaluate whether the hydrocephalus in Tg737 orpk mutants is associated with defects in ion transport, we compared the steady-state pHi and Na+-dependent transport activities of isolated choroid plexus epithelium tissue from Tg737 orpk mutant and wild-type mice. The data indicate that Tg737 orpk mutant choroid plexus epithelium have lower pHi and higher Na+-dependent HCO3− transport activity compared with wild-type choroid plexus epithelium. In addition, wild-type choroid plexus epithelium could be converted to a mutant phenotype with regard to the activity of Na+-dependent HCO3− transport by addition of dibutyryl-cAMP and mutant choroid plexus epithelium toward the wild-type phenotype by inhibiting PKA activity with H-89. Together, these data suggest that cilia have an important role in regulating normal physiology of choroid plexus epithelium and that ciliary dysfunction in Tg737 orpk mutants disrupts a signaling pathway leading to elevated intracellular cAMP levels and aberrant regulation of pHi and ion transport activity.


1993 ◽  
Vol 617 (2) ◽  
pp. 238-248 ◽  
Author(s):  
Patricia Gee ◽  
C. Harker Rhodes ◽  
Lloyd D. Fricker ◽  
Ruth Hogue Angeletti

Neurosurgery ◽  
1988 ◽  
Vol 22 (5) ◽  
pp. 928-933 ◽  
Author(s):  
David G. Munoz ◽  
Robert Griebel ◽  
Bohdan Rozdilsky ◽  
David George

Abstract Two siblings in a family without a history of phacomatosis or cerebral tumors developed malignant tumors in the posterior fossa at age 28 months and in the left cerebral hemisphere at age 15 months, respectively. Dual ependymal and choroid plexus epithelium differentiation was established by histological, ultrastructural, and immunocytochemical studies. The development of this rare tumor in siblings suggests an inherited predisposition, a common environmental insult, or both.


Sign in / Sign up

Export Citation Format

Share Document