Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats

1988 ◽  
Vol 254 (2) ◽  
Author(s):  
C. Maniatopoulos ◽  
J. Sodek ◽  
A.H. Melcher
2015 ◽  
Vol 13 ◽  
pp. 254-265 ◽  
Author(s):  
Wanxun Yang ◽  
Sanne K. Both ◽  
Gerjo J.V.M. van Osch ◽  
Yining Wang ◽  
John A. Jansen ◽  
...  

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 66-70 ◽  
Author(s):  
WH Knospe ◽  
SG Husseini ◽  
W Fried

Abstract Cellulose ester membranes (CEM) were coated with stromal cells from bone marrow (BM) or bone and implanted intraperitoneally (IP) in CAF1 mice for intervals of 1 to 6 months. Previous studies indicated that matrix factors [glycoproteins (GPs), proteoglycans (PGs), and glycosaminoglycans (GAGs)] were secreted by the regenerating stromal cells and adsorbed by the CEM. After 1 to 6 months, the CEMs were removed, scraped free of adherent cells, and irradiated in vitro with 40 Gy. The scraped and irradiated CEMs were then reimplanted IP or subcutaneously (SC) for periods of 1 to 6 months in secondary syngeneic murine hosts. They were then removed for histologic study. CEMs reimplanted in SC sites developed bone and hematopoiesis as early as 1 month after implantation. Maximum hematopoiesis and bone formation was observed after 3 months. CEMs coated during the initial implantation with bone-derived stromal cells contained more bone and hematopoietic cells than did CEMs coated with marrow-derived stromal cells after SC implementation. Neither the CEMs coated with bone stromal cells nor those coated with marrow stromal cells developed new bone or trilineal hematopoiesis after being implanted IP. A few CEMs contained small foci of granulopoiesis only. We conclude that noncellular matrix substances deposited on CEMs by bone, and to a lesser degree by marrow cells, can induce prestromal cells in the SC tissues to produce a microenvironment suitable for trilineal hematopoiesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chunrong Li ◽  
Xin Li ◽  
Xian Wang ◽  
Pei Miao ◽  
Jia Liu ◽  
...  

Osteoporosis is a metabolic disease that results in the progressive loss of bone mass, which, in postmenopausal women, is related to oestrogen deficiency. Periostin (POSTN) plays a key role in the early stages of bone formation. However, whether POSTN participates in oestradiol regulation of osteogenic differentiation of bone marrow stromal cells (BMSCs) from ovariectomised (OVX) rats remains unclear. In vivo, using microcomputed tomography (micro-CT), immunohistochemistry, and dynamic analysis of femurs, we found that 17β-E2 promotes bone formation and POSTN expression at the endosteal surface. In vitro, 17β-E2 upregulated POSTN expression in OVX-BMSCs. POSTN overexpression activated the Wnt/β-catenin signalling pathway and enhanced osteogenic differentiation of OVX-BMSCs. Furthermore, knockdown of Postn blocks the involvement of 17β-E2 in the osteogenic differentiation of OVX-BMSCs. Collectively, our study indicated the role of POSTN in the osteogenesis and stemness of OVX-BMSCs and proves that 17β-E2 reduces osteoporosis and promotes osteogenesis through the POSTN-Wnt/β-catenin pathway. POSTN could, therefore, be a novel target gene for anti-osteoporosis therapies.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 66-70
Author(s):  
WH Knospe ◽  
SG Husseini ◽  
W Fried

Cellulose ester membranes (CEM) were coated with stromal cells from bone marrow (BM) or bone and implanted intraperitoneally (IP) in CAF1 mice for intervals of 1 to 6 months. Previous studies indicated that matrix factors [glycoproteins (GPs), proteoglycans (PGs), and glycosaminoglycans (GAGs)] were secreted by the regenerating stromal cells and adsorbed by the CEM. After 1 to 6 months, the CEMs were removed, scraped free of adherent cells, and irradiated in vitro with 40 Gy. The scraped and irradiated CEMs were then reimplanted IP or subcutaneously (SC) for periods of 1 to 6 months in secondary syngeneic murine hosts. They were then removed for histologic study. CEMs reimplanted in SC sites developed bone and hematopoiesis as early as 1 month after implantation. Maximum hematopoiesis and bone formation was observed after 3 months. CEMs coated during the initial implantation with bone-derived stromal cells contained more bone and hematopoietic cells than did CEMs coated with marrow-derived stromal cells after SC implementation. Neither the CEMs coated with bone stromal cells nor those coated with marrow stromal cells developed new bone or trilineal hematopoiesis after being implanted IP. A few CEMs contained small foci of granulopoiesis only. We conclude that noncellular matrix substances deposited on CEMs by bone, and to a lesser degree by marrow cells, can induce prestromal cells in the SC tissues to produce a microenvironment suitable for trilineal hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document