Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation

2015 ◽  
Vol 13 ◽  
pp. 254-265 ◽  
Author(s):  
Wanxun Yang ◽  
Sanne K. Both ◽  
Gerjo J.V.M. van Osch ◽  
Yining Wang ◽  
John A. Jansen ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 403
Author(s):  
Girolamo Di Maio ◽  
Nicola Alessio ◽  
Ibrahim Halil Demirsoy ◽  
Gianfranco Peluso ◽  
Silverio Perrotta ◽  
...  

Brown-like adipocytes can be induced in white fat depots by a different environmental or drug stimuli, known as “browning” or “beiging”. These brite adipocytes express thermogenin UCP1 protein and show different metabolic advantages, such as the ability to acquire a thermogenic phenotype corresponding to standard brown adipocytes that counteracts obesity. In this research, we evaluated the effects of several browning agents during white adipocyte differentiation of bone marrow-derived mesenchymal stromal cells (MSCs). Our in vitro findings identified two compounds that may warrant further in vivo investigation as possible anti-obesity drugs. We found that rosiglitazone and sildenafil are the most promising drug candidates for a browning treatment of obesity. These drugs are already available on the market for treating diabetes and erectile dysfunction, respectively. Thus, their off-label use may be contemplated, but it must be emphasized that some severe side effects are associated with use of these drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaolei Huang ◽  
Yang Xue ◽  
Jinliang Wu ◽  
Qing Zhan ◽  
Jiangmin Zhao

We aimed to identify a suitable method for long-term monitoring of the migration and proliferation of mesenchymal stromal cells in stroke models of rats using ferritin transgene expression by magnetic resonance imaging (MRI). Bone marrow mesenchymal stromal cells (BMSCs) were transduced with a lentivirus containing a shuttle plasmid (pCDH-CMV-MCS-EF1-copGFP) carrying the ferritin heavy chain 1 (Fth1) gene. Ferritin expression in stromal cells was evaluated with western blotting and immunofluorescent staining. The iron uptake of Fth1-BMSCs was measured with Prussian blue staining. Following surgical introduction of middle cerebral artery occlusion, Fth1-BMSCs and superparamagnetic iron oxide- (SPIO-) labeled BMSCs were injected through the internal jugular vein. The imaging and signal intensities were monitored by diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and susceptibility-weighted imaging (SWI) in vitro and in vivo. Pathology was performed for comparison. We observed that the MRI signal intensity of SPIO-BMSCs gradually reduced over time. Fth1-BMSCs showed the same signal intensity between 10 and 60 days. SWI showed hypointense lesions in the SPIO-BMSC (traceable for 30 d) and Fth1-BMSC groups. T2WI was not sensitive enough to trace Fth1-BMSCs. After transplantation, Prussian blue-stained cells were observed around the infarction area and in the infarction center in both transplantation models. Fth1-BMSCs transplanted for treating focal cerebral infarction were safe, reliable, and traceable by MRI. Fth1 labeling was more stable and suitable than SPIO labeling for long-term tracking. SWI was more sensitive than T2W1 and suitable as the optimal MRI-tracking sequence.


2019 ◽  
Vol 20 (15) ◽  
pp. 3639 ◽  
Author(s):  
Giorgia Maroni ◽  
Daniele Panetta ◽  
Raffaele Luongo ◽  
Indira Krishnan ◽  
Federica La Rosa ◽  
...  

Molecular mechanisms governing cell fate decision events in bone marrow mesenchymal stromal cells (MSC) are still poorly understood. Herein, we investigated the homeobox gene Prep1 as a candidate regulatory molecule, by adopting Prep1 hypomorphic mice as a model to investigate the effects of Prep1 downregulation, using in vitro and in vivo assays, including the innovative single cell RNA sequencing technology. Taken together, our findings indicate that low levels of Prep1 are associated to enhanced adipogenesis and a concomitant reduced osteogenesis in the bone marrow, suggesting Prep1 as a potential regulator of the adipo-osteogenic differentiation of mesenchymal stromal cells. Furthermore, our data suggest that in vivo decreased Prep1 gene dosage favors a pro-adipogenic phenotype and induces a “browning” effect in all fat tissues.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hongyu Qiao ◽  
Ran Zhang ◽  
Lina Gao ◽  
Yanjie Guo ◽  
Jinda Wang ◽  
...  

Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs’ viability and proliferation bothin vivoandin vitrousing bioluminescence imaging (BLI).Methods. BMSCs were isolated fromβ-actin-Fluc+transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 106BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice’s backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot.Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control groupin vitro(P<0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosisin vivo.The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group.Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1906-1906
Author(s):  
Richard W.J. Groen ◽  
Willy A. Noort ◽  
Jessica Sigmans ◽  
Aniek van Stralen ◽  
Linda Aalders ◽  
...  

Abstract Multiple myeloma (MM), a B-cell neoplasm characterized by a clonal expansion of malignant plasma cells in the bone marrow (BM), is accompanied by osteolytic lesions and/or diffuse osteopenia in up to 90% of the patients. Even after successful treatment, these MM-induced bone lesions do not normalize. We hypothesized that this might be caused by MM-induced irreversible impairment of the osteoblast function in the BM microenvironment. To study this bone remodeling processes in MM we used a recently developed, humanized mouse model of MM that allows engraftment and outgrowth of patient MM (pMM) cells in a humanized BM niche. To this end, ceramic scaffolds are seeded with culture-expanded human mesenchymal stromal cells (MSCs) from human BM, differentiated in vitro to osteoblasts for 1 week, then implanted subcutaneously in immune-deficient RAG2-/-gc-/--mice and after 6-8 weeks a layer of human bone is deposited on the surface of the scaffolds. Following the injection of luciferase-GFP gene marked primary MM cells (pMM), this results in homing and outgrowth of pMM in the scaffolds (Groen et al., Blood 2012). Here we describe a modification of this in vivo model, by co-implanting MSC loaded scaffolds, with pMM cells adhered to the hybrid scaffolds, at one side of the mouse, and with hybrid scaffolds only (without pMM) at the other side of the mouse. At this contra-lateral location bone formation can take place undisturbed (i.e., not affected by the presence of MM) and serves as an internal control for the osteogenic potential of the osteoblasts. Thus this model allows us to study bidirectional interactions between pMM cells and the osteoblast and the resulting inhibition of osteogenesis. Here we report that outgrowth pMM cells indeed resulted in on average 50-75% decrease in bone formation, and, using bioluminescence imaging, we found an inverse correlation between the size of the tumor and the amount of bone formation: with increasing tumor size, the amount of bone formed was less. Human AML growing in the scaffolds (serving as control) does not influence the bone forming process. At the end of the experiment when we analyzed gene expression in the human stromal cells (CD73+ CD90+ CD105+) that we cultured from scaffolds containing pMM tumors, we found a significant reduction in expression of transcripts for alkaline phosphatase (ALP), collagen1A1 (colA1), osteoglycin (OGN), osteomodulin (OMD), and abnormal spindle-like microcephaly associated (ASPM), genes that have been implicated in osteogenesis. These data suggest that pMM cells interfere with the osteogenic differentiation of MSCs in the context of an in vivo biocompatible scaffold engineered to simulate the human BM microenvironment. Taken together, our data show that co-implanting MSCs together with the pMM cells can serve as a model to study the effect of pMM cells on osteogenesis, which provides a tool to unravel the mutual interaction between MM cells and the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 163 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Gabri van der Pluijm ◽  
Martine Deckers ◽  
Bianca Sijmons ◽  
Henny de Groot ◽  
John Bird ◽  
...  

2009 ◽  
Vol 33 (4) ◽  
pp. 301-308 ◽  
Author(s):  
Sophia Chia-Ning Chang ◽  
Ching-Lung Tai ◽  
Hui-Ying Chung ◽  
Tsung-Min Lin ◽  
Long-Bin Jeng

2020 ◽  
Vol 21 (24) ◽  
pp. 9563
Author(s):  
Rosana de Almeida Santos ◽  
Karina Dutra Asensi ◽  
Julia Helena Oliveira de Barros ◽  
Rafael Campos Silva de Menezes ◽  
Ingrid Rosenburg Cordeiro ◽  
...  

Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC’s intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC’s tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling.


Sign in / Sign up

Export Citation Format

Share Document