Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex

1991 ◽  
Vol 87 (2) ◽  
Author(s):  
G. Beckers ◽  
V. H�mberg
2021 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Fabiano Botta ◽  
Juan Lupiáñez ◽  
Valerio Santangelo ◽  
Elisa Martín-Arévalo

Several studies have shown enhanced performance in change detection tasks when spatial cues indicating the probe’s location are presented after the memory array has disappeared (i.e., retro-cues) compared with spatial cues that are presented simultaneously with the test array (i.e., post-cues). This retro-cue benefit led some authors to propose the existence of two different stores of visual short-term memory: a weak but high-capacity store (fragile memory (FM)) linked to the effect of retro-cues and a robust but low-capacity store (working memory (WM)) linked to the effect of post-cues. The former is thought to be an attention-free system, whereas the latter would strictly depend on selective attention. Nonetheless, this dissociation is under debate, and several authors do not consider retro-cues as a proxy to measure the existence of an independent memory system (e.g., FM). We approached this controversial issue by altering the attention-related functions in the right superior parietal lobule (SPL) by transcranial magnetic stimulation (TMS), whose effects were mediated by the integrity of the right superior longitudinal fasciculus (SLF). Specifically, we asked whether TMS on the SPL affected the performance of retro cues vs. post-cues to a similar extent. The results showed that TMS on the SPL, mediated by right SLF-III integrity, produced a modulation of the retro-cue benefit, namely a memory capacity decrease in the post-cues but not in the retro-cues. These findings have strong implications for the debate on the existence of independent stages of visual short-term memory and for the growing literature showing a key role of the SLF for explaining the variability of TMS effects across participants.


2017 ◽  
Vol 284 (1867) ◽  
pp. 20172035 ◽  
Author(s):  
Jason Samaha ◽  
Bradley R. Postle

Adaptive behaviour depends on the ability to introspect accurately about one's own performance. Whether this metacognitive ability is supported by the same mechanisms across different tasks is unclear. We investigated the relationship between metacognition of visual perception and metacognition of visual short-term memory (VSTM). Experiments 1 and 2 required subjects to estimate the perceived or remembered orientation of a grating stimulus and rate their confidence. We observed strong positive correlations between individual differences in metacognitive accuracy between the two tasks. This relationship was not accounted for by individual differences in task performance or average confidence, and was present across two different metrics of metacognition and in both experiments. A model-based analysis of data from a third experiment showed that a cross-domain correlation only emerged when both tasks shared the same task-relevant stimulus feature. That is, metacognition for perception and VSTM were correlated when both tasks required orientation judgements, but not when the perceptual task was switched to require contrast judgements. In contrast with previous results comparing perception and long-term memory, which have largely provided evidence for domain-specific metacognitive processes, the current findings suggest that metacognition of visual perception and VSTM is supported by a domain-general metacognitive architecture, but only when both domains share the same task-relevant stimulus feature.


2017 ◽  
Author(s):  
Jason Samaha ◽  
Bradley R. Postle

AbstractAdaptive behavior depends on the ability to accurately introspect about one’s own performance. Whether this metacognitive ability is supported by the same mechanisms across different tasks has thus far been investigated with a focus on correlating metacognitive accuracy between perception and long-term memory paradigms. Here, we investigated the relationship between metacognition of visual perception and metacognition of visual short-term memory (VSTM), a cognitive function thought to be more intimately related to visual processing. Experiments 1 and 2 required subjects to estimate the perceived or remembered orientation of a grating stimulus and rate their confidence. We observed strong positive correlations between individual differences in metacognitive accuracy between the two tasks. This relationship was not accounted for by individual differences in task performance or average confidence, and was present across two different metrics of metacognition and in both experiments. A model-based analysis of data from a third experiment showed that a cross-domain correlation only emerged when both tasks shared the same task-relevant stimulus feature. That is, metacognition for perception and VSTM were correlated when both tasks required orientation judgments, but not when the perceptual task was switched to require contrast judgments. In contrast to previous results comparing perception and long-term memory, which have largely provided evidence for domain-specific metacognitive processes, the current findings suggest that metacognition of visual perception and VSTM is supported by a domain-general metacognitive architecture, but only when both domains share the same task-relevant stimulus feature.


2006 ◽  
Vol 18 (7) ◽  
pp. 1147-1155 ◽  
Author(s):  
L. Romero ◽  
V. Walsh ◽  
C. Papagno

Neuropsychological reports and activation studies by means of positron emission tomography and functional magnetic resonance imaging have suggested that the neural correlates of phonological short-term memory are located in the left hemisphere, with Brodmann's area (BA) 40 being responsible for short-term storage, and BA 44 for articulatory rehearsal. However, a careful review of the literature on the role of left BA 40 shows that the data are equivocal. We tested these hypotheses by means of repetitive transcranial magnetic stimulation (rTMS). Participants performed four tasks: two phonological judgements, thought to require only articulatory rehearsal without the contribution of short-term storage; a digit span, which involves both, short-term storage and articulatory rehearsal; and a pattern span, this last being the control task. The sites of stimulation were left BA 40, left BA 44 and the electrode location vtx, plus a baseline without TMS. Reaction times increased and accuracy decreased in the case of the phonological judgements and digit span after stimulation of both left sites, suggesting that BA 40, in addition to BA 44, is involved in phonological judgements. Possible explanations are discussed, namely, the possibility that (i) the neural correlates of rehearsal are not limited to BA 44 and (ii) phonological judgements involve processes other than rehearsal. We also consider the effects of using different tasks and responses to resolve some of the discrepancies in the literature.


Sign in / Sign up

Export Citation Format

Share Document