On effects of virtual inertia during diffusion of a dispersed medium in a suspension

1987 ◽  
Vol 98 (2) ◽  
pp. 115-122 ◽  
Author(s):  
G. Capriz ◽  
P. Giovine
2020 ◽  
Vol 86 (8) ◽  
pp. 43-48
Author(s):  
V. V. Semenov

Development of the technologies simulating optical processes in an arbitrary dispersed medium is one of the important directions in the field of optical instrumentation and can provide computer simulation of the processes instead of using expensive equipment in physical experiments. The goal of the study is simulation of scattering of optical radiation by aerosol media using the finite element method to show a practical significance of the results of virtual experiments. We used the following initial conditions of the model: radius of a spherical particle of distilled water is 1 μm, wavelength of the incident optical radiation is 0.6328 μm, air is a medium surrounding the particle. An algorithm for implementation of the model by the finite element method is proposed. A subprogram has been developed which automates a virtual experiment for a group of particles to form their random arrangement in the model and possibility of changing their geometric shape and size within predetermined intervals. Model dependences of the radiation intensity on the scattering angle for single particle and groups of particles are presented. Simulation of the light transmission through a dispersed medium provides development of a given photosensor design and determination of the minimum number of photodetectors when measuring the parameters of the medium under study via analysis of the indicatrix of scattering by a group of particles.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1160
Author(s):  
Mohammad Ali Dashtaki ◽  
Hamed Nafisi ◽  
Amir Khorsandi ◽  
Mojgan Hojabri ◽  
Edris Pouresmaeil

In this paper, the virtual synchronous generator (VSG) concept is utilized in the controller of the grid-connected dual two-level voltage source inverter (DTL VSI). First, the topology of the VSG and the DTL VSI are presented. Then, the state-space equations of the DTL VSI and the grid-connected two-level voltage source inverter (TL VSI), regarding the presence of the phase-locked loop (PLL) and the VSG, are given. Next, the small-signal modeling of the DTL VSI and the TL VSI is realized. Eventually, the stability enhancement in the DTL VSI compared with the TL VSI is demonstrated. In the TL VSI, large values of virtual inertia could result in oscillations in the power system. However, the ability of the DTL VSI in damping oscillations is deduced. Furthermore, in the presence of nonlinear loads, the potentiality of the DTL VSI in reducing grid current Total Harmonic Distortion (THD) is evaluated. Finally, by using a proper reference current command signal, the abilities of the DTL VSI and the TL VSI in supplying nonlinear loads and providing virtual inertia are assessed simultaneously. The simulation results prove the advantages of the DTL VSI compared with the TL VSI in virtual inertia emulation and oscillation damping, which are realized by small-signal analysis.


Author(s):  
Santhoshkumar Thenpennaisivem ◽  
V. Senthilkumar

In this article, a hybrid technique is proposed for improving the transient and small signal response in micro grid using virtual inertia. The proposed hybrid technique is the combined execution of both the emperor penguin optimizer (EPO) and butterfly optimization algorithm (BOA), and hence it is called EPOBOA technique. The major objective of the EPOBOA technique is to “optimize the control parameters to regulate the changes occurred in the grid parameter such as voltage and frequency based on the variations of inertia”. Here, the EPO is executed to modify the parameters of virtual synchronous generator units to achieve the objective function. The searching behaviour of the EPO is adapted by using the hunting behaviour of BOA. The proposed technique is executed in MATLAB/Simulink work site, and the experimental results are analyzed under three test cases: normal condition, irradiation change condition, and load change condition. The performance of the proposed technique is compared with different existing techniques and the calculated frequency deviation index of the proposed technique in all the cases is 0.0051, 0.0045, and 0.0047 and found to be very optimal compared with existing methods. Overall, the experimental outcomes show that the proposed EPOBOA method is more efficient and confirm its ability to solve the issues.


Sign in / Sign up

Export Citation Format

Share Document