Histochemical staining of zymogen granules of pancreatic acinar cells using a permanganate-HID-technique

Histochemie ◽  
1972 ◽  
Vol 30 (4) ◽  
pp. 365-366 ◽  
Author(s):  
Christian Klessen
1963 ◽  
Vol 16 (1) ◽  
pp. 1-23 ◽  
Author(s):  
H. Warshawsky ◽  
C. P. Leblond ◽  
B. Droz

Radioautographs of pancreatic acinar cells were prepared in rats and mice sacrificed at various times after injection of leucine-, glycine-, or methionine-H3. Measurements of radioactivity concentration (number of silver grains per unit area) and relative protein concentration (by microspectrophotometry of Millon-treated sections) yielded the mean specific activity of proteins in various regions of the acinar cells. The 2 to 5 minute radioautographs as well as the specific activity time curves demonstrate protein synthesis in ergastoplasm. From there, most newly synthesized proteins migrate to and accumulate in the Golgi zone. Then they spread to the whole zymogen region and, finally, enter the excretory ducts. An attempt at estimating turnover times indicated that two classes of proteins are synthesized in the ergastoplasm: "sedentary" with a slow turnover (62.5 hours) and "exportable" with rapid turnover (4.7 minutes). It is estimated that the exportable proteins spend approximately 11.7 minutes in the Golgi zone where they are built up into zymogen granules, and thereafter 36.0 minutes as fully formed zymogen granules, before they are released outside the acinar cell as pancreatic secretion. The mean life span of a zymogen granule in the cell is estimated to be 47.7 minutes.


1982 ◽  
Vol 30 (1) ◽  
pp. 81-85 ◽  
Author(s):  
M Bendayan

In the present study we report the modifications and the different steps of the protein A-gold (pAg) technique that allow the simultaneous demonstration of two antigenic sites on the same tissue section. The labeling is carried out in the following manner: face A of the tissue section is incubated with an antiserum followed by a pAg complex prepared with large gold particles; face B of the same tissue section is then incubated with a second antiserum followed by a pAg complex prepared with small gold particles. Each of the pAg complexes reveals a different antigenic site on opposite faces of the tissue section. The transparency of the section in the electron beam allows the visualization of the gold particles present on both faces. The double labeling pAg technique was applied for the simultaneous demonstration of two secretory proteins in the same Golgi, condensing vacuoles, and zymogen granules of the rat pancreatic acinar cells.


1962 ◽  
Vol 12 (2) ◽  
pp. 313-327 ◽  
Author(s):  
Bernard Weisblum ◽  
Lawrence Herman ◽  
Patrick J. Fitzgerald

After 10 days of a protein-free diet the acinar cells of the rat pancreas showed a coarsening of nuclear matrix, depletion of zymogen granules, some loss of ribosomes, and a widening of the spaces between ergastoplasmic membranes. In addition, there could be found, but rarely, a lesion of the ergastoplasm consisting of vacuoles of agranular, disoriented membranes, which was similar to a lesion produced by ethionine. Thereafter, a return toward normal structure occurred which was characterized by beginning increase in the size of the Golgi apparatus at 12 days, appearance of zymogen granules at 18 days, and a relatively normal appearing but smaller cell at 28 days. After 10 to 12 days of protein deprivation a reversal of many of the morphologic effects of protein deprivation was accompanied by a return toward normal of some pancreatic enzyme activities. Possibly this spontaneous return toward normal levels represented a raiding of protein stores, or it may have been an adaptive phenomenon.


2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 236-236
Author(s):  
Tatsuo Ito ◽  
Ryuichiro Doi ◽  
Shinji Uemoto

236 Background: Sorafenib is an oral multi-kinase inhibitor which is regarded as a key drug for HCC and RCC. It has been unexpectedly found that the compound causes an increase of serum pancreatic enzyme levels without clinically recognized pancreatitis. The reason for this event is not well understood yet. The aim of this study was to clarify the mechanisms involved in this phenomenon. Methods: Eight-week old BALB/cA male mice were used in in vivo studies. Sorafenib tosylate was administered per os once daily at a dose of 150 mg/kg body weight. Control mice were given vehicle alone. Mice were sacrificed 24 hr after 1-, 2-, 3- and 7-day administration of the compound, and blood samples and pancreatic tissue samples were obtained (n=5 for each group). The tissue samples were used for hematoxylin and eosin (HE) staining, immunohistochemistry, electron microscopy (EM), western blot and RT-quantitative PCR studies. Results: Serum amylase levels were elevated after sorafenib administration. The amylase level hit the peak after 2-day administration, and then gradually decreased. By HE staining, the control group without sorafenib showed a basophilic stained area in the baso-lateral site of the acinar cells. In contrast, the acinar cytoplasm after 2-day administration of sorafenib was totally eosinophilic. The typical findings of acute pancreatitis were not seen in the both group. By EM examination, zymogen granules (ZGs) of the sorafenib group spread into basal site of the acinar cells. ZGs mounted up on both of apical and baso-lateral plasma membrane and showed exocytosis. The levels of amylase mRNA were not elevated by sorafenib. In addition the expression of N-ethylmaleimidesensitive factor attachment protein receptor (SNARE) proteins was not changed. Conclusions: The results suggest that the amount of acinar amylase production was not changed but the distribution of ZGs was altered by sorafenib. Sorafenib seemed to cause temporary loss of polarity of ZGs secretion in acinar cells by blocking apical exocytosis. Acute pancreatitis was not evident; thus the current model was not similar to the pancreatitis model caused by the supra-maximal secretagogue stimulation which blocks the apical exocytosis.


2016 ◽  
Vol 150 (4) ◽  
pp. S916
Author(s):  
Kiyoshi Iwahashi ◽  
Hayato Hikita ◽  
Minoru Shigekawa ◽  
Kenji Ikezawa ◽  
Ryotaro Sakamori ◽  
...  

1971 ◽  
Vol 50 (2) ◽  
pp. 469-483 ◽  
Author(s):  
Norton B. Berg ◽  
Richard W. Young

The metabolism of inorganic sulfate in pancreatic acinar cells was studied by electron microscope radioautography in mice injected with sulfate-35S. Labeled sulfate was concentrated in the Golgi complex at 10 min. Within 30 min, much of the radioactive material had been transferred to condensing vacuoles. These were subsequently transformed into zymogen granules. By 4 hr after injection, some of the zymogen granules with radioactive contents were undergoing secretion, and labeled material was present in the pancreatic duct system. The Golgi complex in pancreatic acinar cells is known to be responsible for concentrating and packaging digestive enzymes delivered to it from the endoplasmic reticulum. Our work demonstrates that the Golgi complex in these cells is also engaged in the manufacture of sulfated materials, probably sulfated mucopolysaccharides, which are packaged along with the enzymes in zymogen granules and released with them into the pancreatic secretion.


1962 ◽  
Vol 12 (2) ◽  
pp. 277-296 ◽  
Author(s):  
Lawrence Herman ◽  
Patrick J. Fitzgerald

Degeneration of pancreatic acinar cells in rats injected with ethionine was studied by electron microscopy. The most conspicuous morphologic lesions occurred in the ergastoplasm. There was a widening of the endoplasmic reticulum, a decrease in number of membrane-associated ribosomes, and a development of fine and coarse vacuoles containing agranular disoriented membranes. Cytoplasmic ribosomes unassociated with membranes were less numerous. Nuclear changes consisted of a coarsening and clumping of the nuclear chromatin, chromatin margination, and increased osmiophilia and vacuolation of the nucleolus. Eight to ten days after the beginning of ethionine injections, changes in zymogen granules, mitochondria, and the Golgi apparatus appeared, but only after extensive damage to the acinar cell. The effects were consistent with ethionine's known interference with protein metabolism but also suggest disturbance in ribonucleic acid metabolism. The ergastoplasmic changes after ethionine were similar in some respects to the early lesions produced in liver parenchymal cells by fasting, to the changes occurring in animals on protein-free diets, or to some of the liver changes produced by azo dye carcinogens. The ribosomal and ergastoplasmic changes represent early morphologic expressions of the biochemical effect of ethionine.


Sign in / Sign up

Export Citation Format

Share Document