Fluorescence in situ hybridization to interphase cell nuclei in suspension allows flow cytometric analysis of chromosome content and microscopic analysis of nuclear organization

1988 ◽  
Vol 78 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Barbara Trask ◽  
Ger van den Engh ◽  
Dan Pinkel ◽  
Jim Mullikin ◽  
Fred Waldman ◽  
...  
Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1512-1519 ◽  
Author(s):  
LJ Coignet ◽  
E Schuuring ◽  
RE Kibbelaar ◽  
TK Raap ◽  
KK Kleiverda ◽  
...  

Rearrangements within the chromosome 11q13 region are frequent in hematologic malignancies. 50% of 75% of mantle cell lymphomas (MCLs) carry a translocation t(11;14) (q13;q32). Using Southern blot analysis, a BCL1 breakpoint can be detected in approximately 50% of MCLs. It is not known whether other MCLs harbor also breakpoints at 11q13. Breakpoints in this region not involved in t(11;14), are detected in chronic lymphocytic leukemia and acute myeloid leukemia. To detect and localize breakpoints at 11q13 more accurately, we have developed fluorescence in situ hybridization using two probe sets of differently labeled cosmids, symmetrically localized at either side of the major translocation cluster of BCL1. These probes span a region of 450 to 750 kb. We applied this assay to a series of hematologic malignancies with 11q13 abnormalities identified by classical cytogenetics. All four samples with a t(11;14) (q13;q32) showed dissociation of the differently colored signals in metaphase and interphase cells, thereby indicating a chromosomal break in the region defined by the probe sets. The frequency of abnormal metaphase and interphase cells was comparable with that observed in any of the 13 malignancies with other chromosomal 11q13 abnormalities, indicating that these chromosomal breaks occurred outside the 450- to 750-kb region covered by the probes. One patient showed triplication and one patient showed monoallelic loss of this region. The current data show that double-color fluorescence in situ hybridization is a simple and reliable method for detection of the t(11;14)(q13;q32) in interphase cell nuclei and that is can be used to distinguish this translocation from other 11q13 rearrangements in hematologic malignancies.


CytoJournal ◽  
2012 ◽  
Vol 9 ◽  
pp. 14 ◽  
Author(s):  
Amberly L Nunez ◽  
Nirag C Jhala ◽  
Andrew J Carroll ◽  
Fady M Mikhail ◽  
Vishnu V.B. Reddy ◽  
...  

Background: We retrospectively studied 1338 samples of lymph nodes obtained by endoscopic and endobronchial ultrasound-guided fine needle aspiration biopsy (EUS and EBUS-FNAB) with an objective of characterizing the utility of this diagnostic modality in the assessment of deep-seated lymphadenopathy. The secondary aims were to establish the utility in the diagnosis of lymphoma and to determine the number of passes required to obtain adequate cellularity for flow cytometric analysis. Materials and Methods: On-site assessment was performed by a cytopathologist using Diff-Quik (American Scientific Products, McGraw Park, IL) stain. In addition, Papanicolaou and immunohistochemical stains were performed and additional samples were sent for flow cytometric analyses (n = 145). The final cytologic diagnosis was correlated with surgical pathology diagnosis and/or clinical follow-up. In select cases, fluorescence in situ hybridization analysis with specific probes was performed on Diff-Quik smears. Results: Both morphology as well as ancillary studies (flow cytometry or immunohistochemical stain and/or fluorescence in situ hybridization) show that EUS and EBUS-FNA are effective techniques to detect and stage intrathoracic and intra-abdominal tumors. Operating characteristics show that these are highly sensitive (89%) and specific (100%) techniques for the diagnosis of lymphoma. At least two passes provided an average of 5.66 million cells (range, 0.12-62.32 million) for lymphoma cases. Conclusions: EUS and EBUS-FNA are powerful modalities to stage malignancies and at least two passes can provide adequate cells for flow cytometric analysis. We also demonstrate that fluorescence in situ hybridization analysis can be performed on Diff-Quik-stained and mounted smears.


2012 ◽  
Vol 14 (3) ◽  
pp. 443-451 ◽  
Author(s):  
Xiaozhu Wang ◽  
Shin-ichiro Takebayashi ◽  
Evans Bernardin ◽  
David M. Gilbert ◽  
Ravindran Chella ◽  
...  

2016 ◽  
Vol 136 (3) ◽  
pp. 157-166 ◽  
Author(s):  
Yoshimasa Kamoda ◽  
Kiyotaka Izumi ◽  
Futoshi Iioka ◽  
Takashi Akasaka ◽  
Fumihiko Nakamura ◽  
...  

Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) may include the lymphoid blast crisis of chronic myeloid leukemia (CML-BC). We applied fluorescence in situ hybridization (FISH) of the BCR-ABL fusion gene to peripheral blood and/or bone marrow smears to determine whether the fusion was restricted to mononuclear cell nuclei or if segmented cell nuclei representing mature neutrophils also carried the fusion (Seg-FISH). Among 20 patients with Ph+ ALL without a prior diagnosis of CML, 9 were Seg-FISH+ and 11 were Seg-FISH-. Seg-FISH+ cases were characterized by a higher rate of p210-type BCR-ABL transcripts, higher white cell and blast counts, and a higher rate of myeloid and T-lymphoid antigen expression than Seg-FISH- cases, in addition to ‘major route' cytogenetic abnormalities associated with CML-BC. Eighteen patients were treated with tyrosine kinase inhibitors (TKIs) either alone or in combination with multiagent chemotherapy, and 7 underwent allogeneic hematopoietic stem cell transplantation. Progression-free and overall survivals were greater in the Seg-FISH+ group than in the Seg-FISH- group. These results suggest that the Seg-FISH+ group represents lymphoid CML-BC that occurs de novo, while the Seg-FISH- represents Ph+ ALL in the strict sense, and the two groups are associated with survival when treated with TKIs or TKI-combined therapy.


Sign in / Sign up

Export Citation Format

Share Document