CytoJournal
Latest Publications


TOTAL DOCUMENTS

367
(FIVE YEARS 90)

H-INDEX

19
(FIVE YEARS 3)

Published By Scientific Scholar

0974-5963

CytoJournal ◽  
2022 ◽  
Vol 19 ◽  
pp. 2
Author(s):  
Swasti Jain ◽  
Manju Kaushal ◽  
Minakshi Bhardwaj

CytoJournal ◽  
2022 ◽  
Vol 19 ◽  
pp. 1
Author(s):  
Shruti Gupta ◽  
Nirmalya Banerjee ◽  
Parikshaa Gupta ◽  
Manish Rohilla ◽  
Nalini Gupta ◽  
...  

Objectives: Bone is a frequent site of metastases and typically indicates a short-term prognosis in cancer patients. The majority of skeletal metastases are due to breast and prostate cancer. Bone metastasis is actually much more common than primary bone cancers, especially in adults. Fine-needle aspiration cytology (FNAC) provides reasonably accurate pre-operative diagnosis in vast majority of cases. This study aims to elicit the cytomorphological detail of various metastatic bone tumors. Material and Methods: A total of 109 cases of tumors metastatic to bone have been included in this study. The details of the cases were available from the archives of the department of cytology. May Grunwald Giemsa and hematoxylin and eosin stained smears were studied and examined for the cytomorphological spectrum. Cell block and immunohistochemistry tests were done, wherever feasible. Results: Among 109 patients, the mean age was 54.52 years. There was male preponderance with 90 males and 19 females. The most common site of metastases was in the vertebra (82 cases), and 76 cases were in the dorsolumbar region. The most common type of tumor metastasizing was adenocarcinoma. Conclusion: FNAC is a very useful, economical procedure. There are characteristic cytological features of the metastatic lesions and the basic diagnostic categorization of the malignant tumors is possible on FNAC. Regarding the primary source clinical history, radiological features of the primary tumor, if any, and immunocytochemistry may be needed.


CytoJournal ◽  
2021 ◽  
Vol 18 ◽  
pp. 30
Author(s):  
Vinod B. Shidham ◽  
Lester J. Layfield

Serous fluids are excessive accumulation of fluids in a serous cavity as effusion. However, traditionally this area also covers cytopathologic evaluation of washings of these cavities including pelvic/peritoneal washing. This is the introductory review article in series on this topic with the application of simplified algorithmic approaches. The series would be compiled finally as a book after minor modifications of individual review articles to accommodate the book layout on the topic as second edition of ‘Diagnostic Cytopathology of Serous Fluids’ book. The approach is primarily directed towards detection of neoplastic cells based on morphology alone or with the help of various ancillary tests, including commonly applied immunocytochemistry to be interpreted as second foreign population with application of SCIP (subtractive coordinate immunoreactivity pattern) approach in effusion fluid tapings. As the role of molecular pathology tests is increasing, this component as ancillary testing will also be covered as applicable. Because a picture and sketches are worth a thousand words, illustrations and figures are included generously even at the risk of moderate repetition. The clinically important serous cavities include peritoneal cavity, pericardial cavity, and two pleural cavities. The primary topic of this series is specimens from these cavities as effusion fluids and washings including cytopathologic evaluation of peritoneal/pelvic washing. It is expected that some readers may not read the entire series or the final book from beginning to end, but refer to the individual review articles and chapters sporadically during their clinical practice. Considering this practical limitation, some brief repetition may be observed throughout the book. Some of the important themes will be highlighted as italicized and bolded text for quick reference. Dedicated articles/chapters are assigned for technical and other reference material as appendices. Tables, algorithms, sketches, and combination of pictures are included generously for quick reference. Most of the illustrations are attempted to be labeled appropriately with arrows and other indicators to avoid equivocation, especially for beginners in the field. This introductory review article describes general details under the following three broad headings: Histology and general cytology of serous cavity lining Effusion (general considerations) Ancillary techniques in brief.


CytoJournal ◽  
2021 ◽  
Vol 18 ◽  
pp. 34
Author(s):  
Francisco García-Molina ◽  
Maria Francisca Cegarra-Navarro ◽  
Renzo Javier Andrade-Gonzales ◽  
Francisco Martinez-Díaz

In this study, we present six cases of axillary or supraclavicular lymphadenopathies in the days following to the Pfizer-BioNTech vaccine’s first dose and its study for fine-needle aspiration cytology (two patients), biopsy with a gross needle (two patients), and the evolution of two other patients. Cytological smears and histological sections reveal reactive nodes, predominantly T, CD8, and the presence of atypia with striking mitosis. Differential diagnosis with viral lymphadenopathies and lymphoma is important, so the clinical correlation, in a vaccination context, sudden appearance, and progressive decrease in days of the adenopathy, is essential. In this article, we have studied the cytohistological manifestations of post-Pfizer-BioNTech vaccination lymphadenopathy and discussed its differential diagnosis.


CytoJournal ◽  
2021 ◽  
Vol 18 ◽  
pp. 35
Author(s):  
Saumya Sahu ◽  
Parikshaa Gupta ◽  
Pranab Dey

Cytological examination of the effusion fluid provides valuable information regarding the presence of malignancy. At times, it is challenging to diagnose malignant cells in serous effusion. The various ancillary techniques are available to solve the problem including immunocytochemistry, DNA ploidy, and multicolored flow cytometry. At present, the molecular tests on the effusion sample are of growing interest. The effusion sample is rich in cells and cell-free fluid that contains free DNA, cytokines, and extracellular vesicles. Molecular tests in effusion sample not only provide a diagnosis of malignancy but can also give valuable information that may be essential for the individualized therapy, management, and prognostic assessment. In this paper, we reviewed the application of the different molecular tests in the effusion sample.


CytoJournal ◽  
2021 ◽  
Vol 18 ◽  
pp. 36
Author(s):  
Neelam Sood ◽  
Ruchika Gupta ◽  
Sanjay Gupta

CytoJournal ◽  
2021 ◽  
Vol 18 ◽  
pp. 32
Author(s):  
Vinod B. Shidham ◽  
Lester J. Layfield

Collection of most serous fluids from various effusions is a relatively simple procedure. Because of this, serous fluids are commonly submitted for pathologic examination including cytopathologic evaluation by various clinical institutions. As a consequence, even a general pathology laboratory which may not have expertise with highly trained cytopathologist would be confronted with serous fluids for cytologic evaluation. However, cytopathologic evaluation of serous fluids is complex as compared to evaluation of fine needle aspiration cytology. This signifies the fact that all pathologists, irrespective of subspeciality cytopathology training and level of subspeciality expertise, should be conversant with the diagnostic challenges and pitfalls of effusion fluid cytology. Although, majority of effusions are due to reactive and non-neoplastic etiologies, cancer is one of the causes of an effusion as a manifestation of advanced cancer. Detecting neoplastic cells in effusion specimens in most of clinical settings is related to the advanced status of the disease, which usually is equivalent to incurable stage. Thus, interpretation of cytopathology as positive for cancer cell is highly critical in planning the trajectory of the clinical management with an obvious negative impact of false positive interpretation. Apart from cancer, effusions may be secondary to hemodynamic pathologies such as heart failure, hypoalbuminemia, cirrhosis etc. in addition to the different inflammatory conditions including parasitic infestations, bacterial, fungal, or viral infections, and other non-neoplastic etiologies including collagen diseases. Due to the cytomorphologic overlap of reactive mesothelial cells with malignant cells, general cytologic criteria for diagnosis of malignancy in single cells cannot be applied in most of the effusion specimens. This challenge is further amplified because of surface tension related phenomenon which ‘round up’ the cells after exfoliation in serous fluids. As a result, the native shapes of cancer cells cannot be a guiding feature. Thus the cytomorphologic features of cancer cells in serous fluids may not be same as seen in routine cytopathology of exfoliative, brushing, and fine-needle aspiration specimens. The cancer cells may continue to proliferate after exfoliation in the nutrient rich effusion fluids and may form proliferation spheres. It is crucial to consider these factors when interpreting effusion cytology. Amongst malignant effusions, adenocarcinomas are the most common cause of metastatic cancers, but almost any type of malignancy including melanomas, hematopoietic neoplasms, sarcomas, and mesotheliomas may involve serous cavities. The interpreter must be aware of the wide range of the cytomorphologic appearances of reactive mesothelial cells in effusion fluids. It is essential to understand these and other nuances related to effusion fluid cytology. Understanding potential pitfalls during various stages from processing to application of ancillary studies would increase the diagnostic accuracy and minimize atypical interpretations and false positivity.


CytoJournal ◽  
2021 ◽  
Vol 18 ◽  
pp. 33
Author(s):  
Vinod B Shidham

Effusion fluid cytology has propensity for both false positives (in up to 0.5%) and false negatives (in up to 30%) results. Methodical approach from collection step to final interpretation stage could prevent both false positives and false negatives, if the interpreter is familiar with various factors responsible for diagnostic pitfalls in effusion fluid cytology. For this discussion, these factors are categorized as mentioned below: Surface tension-related alterations in cytomorphology Improper specimen processing Many faces of reactive mesothelial cells, overlapping with those of cancer cells Proliferation-related features Degenerative changes, such as nuclear hyperchromasia and cytoplasmic vacuolation Unexpected patterns and unusual entities.


CytoJournal ◽  
2021 ◽  
Vol 18 ◽  
pp. 31
Author(s):  
Vinod B. Shidham

All effusions in serous cavities represent a pathologic processes secondary to inflammatory, neoplastic, hemodynamic, or mechanical/traumatic etiologies. This elicits reactive changes in the extremely sensitive mesothelial cells lining the serosal surfaces. The result is hypertrophy and hyperplasia which lead to broad changes with a wide range of morphological appearances. These reversible alterations may resolve entirely after the recovery of underlying pathology. Under the tertiary care situations, neoplastic effusion specimens are encountered more frequently. Although some non-neoplastic pathologic process may demonstrate a few diagnostic features, cytologic evaluation of malignant effusions usually show diagnostic malignant cells. However, the most versatile mesothelial cells demonstrate a very wide cytomorphological spectrum secondary to reactive challenges. These mesothelial cells are usually referred to as ‘reactive mesothelial cells’. In addition other terms such as reactive mesothelial proliferation, reactive mesothelial hyperplasia, irritated mesothelial cells, activated mesothelial cells, hyperplastic mesothelial cells, hypertrophic mesothelial cells, and proliferative mesothelial cells. Rarely atypical mesothelial cells, although not recommended, is used inadvertently. Although there is a lack of general agreement defining these terms, some of these including atypical mesothelial cells, should not be preferred. With reference to this CMAS series, usually favored term ‘reactive mesothelial cells’ is preferred. The size of reactive mesothelial cells range from 15 to 30 µm (but may be up to 50 µm). These polyhedral cells with variable amount of cytoplasm and enlarged nuclei may show variation in sizes and shapes with conspicuous nucleoli. Bi- and multi-nucleation is frequent. Cohesive groups of mesothelial cells as sheets and three dimensional groups may be present. Some floridly reactive mesothelial cells with hyperchromatic enlarged nuclei with prominent nucleoli and scant cytoplasm may resemble malignant cells. This astonishingly wide morphological spectrum of reactive mesothelial cells is a significant interpretation challenge in effusion fluid cytology. Methodical interpretation approach with appropriate knowledge about this wide spectrum is important aspect in diagnostic cytopathology of effusion fluids.


CytoJournal ◽  
2021 ◽  
Vol 18 ◽  
pp. 29
Author(s):  
Sanjivani B. Dubal ◽  
Saleem Pathuthara ◽  
Subhash Yadav ◽  
Bharat Rekhi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document