Ontogeny of gonadotropic and thyrotropic cells in fetal mouse anterior pituitary

1988 ◽  
Vol 178 (1) ◽  
pp. 21-27 ◽  
Author(s):  
F. Dihl ◽  
M. B�geot ◽  
C. Loevenhruck ◽  
M. P. Dubois ◽  
P. M. Dubois



Author(s):  
Burton B. Silver ◽  
Ronald S. Nelson

Some investigators feel that insulin does not enter cells but exerts its influence in some manner on the cell surface. Ferritin labeling of insulin and insulin antibody was used to determine if binding sites of insulin to specific target organs could be seen with electron microscopy.Alloxanized rats were considered diabetic if blood sugar levels were in excess of 300 mg %. Test reagents included ferritin, ferritin labeled insulin, and ferritin labeled insulin antibody. Target organs examined were were diaphragm, kidney, gastrocnemius, fat pad, liver and anterior pituitary. Reagents were administered through the left common carotid. Survival time was at least one hour in test animals. Tissue incubation studies were also done in normal as well as diabetic rats. Specimens were fixed in gluteraldehyde and osmium followed by staining with lead and uranium salts. Some tissues were not stained.



Author(s):  
Robert R. Cardell

Hypophysectomy of the rat renders this animal deficient in the hormones of the anterior pituitary gland, thus causing many primary and secondary hormonal effects on basic liver functions. Biochemical studies of these alterations in the rat liver cell are quite extensive; however, relatively few morphological observations on such cells have been recorded. Because the available biochemical information was derived mostly from disrupted and fractionated liver cells, it seemed desirable to examine the problem with the techniques of electron microscopy in order to see what changes are apparent in the intact liver cell after hypophysectomy. Accordingly, liver cells from rats which had been hypophysectomized 5-120 days before sacrifice were studied. Sham-operated rats served as controls and both hypophysectomized and control rats were fasted 15 hours before sacrifice.



Author(s):  
Burton B. Silver

Sectioned tissue rarely indicates evidence of what is probably a highly dynamic state of activity in mitochondria which have been reported to undergo a variety of movements such as streaming, divisions and coalescence. Recently, mitochondria from the rat anterior pituitary have been fixed in a variety of configurations which suggest that conformational changes were occurring at the moment of fixation. Pinocytotic-like vacuoles which may be taking in or expelling materials from the surrounding cell medium, appear to be forming in some of the mitochondria. In some cases, pores extend into the matrix of the mitochondria. In other forms, the remains of what seems to be pinched off vacuoles are evident in the mitochondrial interior. Dense materials, resembling secretory droplets, appear at the junction of the pores and the cytoplasm. The droplets are similar to the secretory materials commonly identified in electron micrographs of the anterior pituitary.



Author(s):  
J. Curtis ◽  
K. S. Schwartz ◽  
R. P. Apkarian

A scanning electron microscope (SEM) study was made of the effect of adrenocorticotropic hormone (ACTH) on the size and numbers of fenestrae/unit area in the capillary endothelium of the zona fasciculata (ZF) of the rat adrenal. The stimulatory effect of ACTH on cholesterol uptake via high density lipoproteins in the rat and evidence for the secretion of glucocorticoids by exocytosis of lipid droplets described by Rhodin suggest that endothelial change may accompany these transport phenomena.Twelve rats received two Dexamethasone (DEX) ip injections (25 μg DEX/100 g body wt.), the first at 8 PM and the second at 8 AM the next day, to inhibit the release of endogenous ACTH by the anterior pituitary. The animals were then divided into two groups. Six animals received only saline vehicle and six rats received ACTH (100 ng/100 g body wt.).



Author(s):  
P.W. Coates ◽  
E.A. Ashby ◽  
L. Krulich ◽  
A. Dhariwal ◽  
S. McCann

The morphologic effects on somatotrophs of crude sheep hypothalamic extract prepared from stalk-median eminence were studied by electron microscopy in conjunction with concurrently run bioassays performed on the same tissue samples taken from young adult male Sherman rats.Groups were divided into uninjected controls and injected experimentals sacrificed at 5', 15', and 30' after injection. Half of each anterior pituitary was prepared for electron microscopic investigation, the other half for bioassay. Fixation using collidine buffered osmium tetroxide was followed by dehydration and embedment in Maraglas. Uranyl acetate and lead citrate were used as stains. Thin sections were examined in a Philips EM 200.Somatotrophs from uninjected controls appeared as described in the literature (Fig. 1). In addition to other components, these cells contained moderate numbers of spherical, electron-dense, membrane-bound granules approximately 350 millicrons in diameter.



Author(s):  
S. Jalalah ◽  
K. Kovacs ◽  
E. Horvath

Lactotrophs, as many other endocrine cells, change their morphology in response to factors influencing their secretory activity. Secretion of prolactin (PRL) from lactotrophs, like that of other anterior pituitary hormones, is under the control of the hypothalamus. Unlike most anterior pituitary hormones, PRL has no apparent target gland which could modulate the endocrine activity of lactotrophs. It is generally agreed that PRL regulates its own release from lactotrophs via the short loop negative feedback mechanism exerted at the level of the hypothalamus or the pituitary. Accordingly, ultrastructural morphology of lactotrophs is not constant; it is changing in response to high PRL levels showing signs of suppressed hormone synthesis and secretion.By transmission electron microscopy and morphometry, we have studied the morphology of lactotrophs in nontumorous (NT) portions of 7 human pituitaries containing PRL-secreting adenoma; these lactotrophs were exposed to abnormally high PRL levels.



Author(s):  
K.C. Feng-Chen ◽  
F.B. Essien ◽  
K.J. Prestwidge ◽  
J.T. Cheng ◽  
C.L. Shen

The physiology of the fetal heart differs significantly from that of the mature post-natal organ: e.g., the metabolic supply for adult cardiac contraction relies mainly on fatty acids; whereas, the fetal heart uses carbohydrates as its primary energy source. Limited morphological descriptions of the developing myocardium have appeared. However, additional studies are required to elucidate the ultrastructural changes occuring in the perinatal period when enormous physiological adjustments are made. Although adult animals are most often used in toxocological and pathological analyses, it is also important to investigate fetal cardiac responsiveness to various agents. The vulnerability of the ultrastructure of the fetal mouse myocardium to genetic and environmental assault is the subject of this report. The genetically determined effect on the heart was observed in mouse embryos homozygous for the cab (cardiac abnormality) mutation discovered by Essien.



1986 ◽  
Vol 390 (2) ◽  
pp. 287-291 ◽  
Author(s):  
A TEMPEL ◽  
S CRAIN ◽  
E PETERSON ◽  
E SIMON ◽  
R SUZANNEZUKIN


Sign in / Sign up

Export Citation Format

Share Document