On the fine structure of the perivascular cells in the neural lobe of rats

1972 ◽  
Vol 132 (1) ◽  
pp. 25-34 ◽  
Author(s):  
C. Olivieri-Sangiacomo

2013 ◽  
Vol 88 (4) ◽  
pp. 196-203 ◽  
Author(s):  
Depicha Jindatip ◽  
Ken Fujiwara ◽  
Kotaro Horiguchi ◽  
Takehiro Tsukada ◽  
Tom Kouki ◽  
...  


1977 ◽  
Vol 73 (2) ◽  
pp. 197-205 ◽  
Author(s):  
E. L. RODRÍGUEZ ◽  
ECHANDÍA, J. C. CAVICHIA ◽  
E. M. RODRÍGUEZ

SUMMARY The effects of an injection of vinblastine (Vbl) into the median eminence on the structure, fine structure and antidiuretic hormone (ADH) content of the hypothalamo-neurohypophysial system in the rat is reported. The animals were studied on days 3, 8 and 25 after the injection of 1 or 5 mm-Vbl (3 μl). Significant changes were observed only in the 5 mm-Vbl-injected animals. Their median eminence extracts showed a progressive accumulation of ADH whereas ADH depletion occurred in the neural lobe extracts. On day 8 after injection, the animals exhibited strong polidipsia although considerable amounts of ADH still remained within the neural lobe. The ADH content of the plasma samples was consistently below the sensitivity of the method (5 μu.). The light microscopic analysis showed accumulation of Gomori-stainable products in the median eminence and a striking depletion of this material from the neural lobe. Electron microscopy revealed accumulation of neurosecretory vesicles and other inclusions proximal to the site of injection in the median eminence together with some evidence of nerve fibre degeneration. Few neurosecretory terminals were found in the neural lobe of the 8-day experimental rats. They had been engulfed by pituicytes for digestion. Recuperation of the normal ADH content of both median eminence and neural lobe was found to occur on day 25 after the Vbl injection. Simultaneously, the neural lobe refilled with Gomori-positive materials and neurosecretory terminals reappeared. The results suggest (1) reversible blockade of axoplasmic transport at the site of the Vbl injection; (2) reversible degeneration of neurosecretory terminals and (3) reversible blockade of ADH release in the surviving terminals of the neural lobe.





1981 ◽  
Vol 4 (2) ◽  
pp. 89-97 ◽  
Author(s):  
H.-Dieter Dellmann ◽  
Karin Sikora
Keyword(s):  


1981 ◽  
Vol 219 (2) ◽  
Author(s):  
Ewa Stach-Chilf ◽  
JerzyB. Warchol ◽  
Christoph Pilgrim


Author(s):  
W. H. Zucker ◽  
R. G. Mason

Platelet adhesion initiates platelet aggregation and is an important component of the hemostatic process. Since the development of a new form of collagen as a topical hemostatic agent is of both basic and clinical interest, an ultrastructural and hematologic study of the interaction of platelets with the microcrystalline collagen preparation was undertaken.In this study, whole blood anticoagulated with EDTA was used in order to inhibit aggregation and permit study of platelet adhesion to collagen as an isolated event. The microcrystalline collagen was prepared from bovine dermal corium; milling was with sharp blades. The preparation consists of partial hydrochloric acid amine collagen salts and retains much of the fibrillar morphology of native collagen.



Author(s):  
E. Horvath ◽  
K. Kovacs ◽  
G. Penz ◽  
C. Ezrin

Follicular structures, in the rat pituitary, composed of cells joined by junctional complexes and possessing few organelles and few, if any, secretory granules, were first described by Farquhar in 1957. Cells of the same description have since been observed in several species including man. The importance of these cells, however, remains obscure. While studying human pituitary glands, we have observed wide variations in the fine structure of follicular cells which may lead to a better understanding of their morphogenesis and significance.



Author(s):  
E. N. Albert

Silver tetraphenylporphine sulfonate (Ag-TPPS) was synthesized in this laboratory and used as an electron dense stain for elastic tissue (Fig 1). The procedures for the synthesis of tetraphenylporphine sulfonate and the staining method for mature elastic tissue have been described previously.The fine structure of developing elastic tissue was observed in fetal and new born rat aorta using tetraphenylporphine sulfonate, phosphotungstic acid, uranyl acetate and lead citrate. The newly forming elastica consisted of two morphologically distinct components. These were a central amorphous and a peripheral fibrous. The ratio of the central amorphous and the peripheral fibrillar portion changed in favor of the former with increasing age.It was also observed that the staining properties of the two components were entirely different. The peripheral fibrous component stained with uranyl acetate and/or lead citrate while the central amorphous portion demonstrated no affinity for these stains. On the other hand, the central amorphous portion of developing elastic fibers stained vigorously with silver tetraphenylporphine sulfonate, while the fibrillar part did not (compare figs 2, 3, 4). Based upon the above observations it is proposed that developing elastica consists of two components that are morphologically and chemically different.



Author(s):  
J. E. Lai-Fook

Dermal glands are epidermal derivatives which are reported to secrete either the cement layer, which is the outermost layer of the epicuticle or some component of the moulting fluid which digests the endocuticle. The secretions do not show well-defined staining reactions and therefore they have not been positively identified. This has contributed to another difficulty, namely, that of determining the time of secretory activity. This description of the fine structure of the developing glands in Rhodnius was undertaken to determine the time of activity, with a view to investigating their function.



Sign in / Sign up

Export Citation Format

Share Document