human pituitary
Recently Published Documents


TOTAL DOCUMENTS

1684
(FIVE YEARS 53)

H-INDEX

69
(FIVE YEARS 4)

2022 ◽  
Vol 15 (1) ◽  
pp. 101299
Author(s):  
Rongxin Geng ◽  
Xiaonan Zhu ◽  
Xiang Tao ◽  
Junhui Liu ◽  
Haitao Xu

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi81-vi81
Author(s):  
Javier Lepe ◽  
Christopher Douglas ◽  
Naomi Lomeli ◽  
Kaijun Di ◽  
Bhaskar Das ◽  
...  

Abstract Glioblastoma (WHO Grade IV glioma) is the most aggressive brain cancer. The current standard of care treatment includes surgery, radiation, and chemotherapy. Tumor recurrence is almost inevitable as less than 50% of patients survive more than two years. The low survival rate poses a dire need to develop an effective therapy for GBM patients. GBM cells are resistant to treatment, as they activate their DNA damage response mechanisms to overcome the effects of radiation and temozolomide (TMZ) treatments. Recurrent tumors can arise from slow cycling and self-renewing stem/tumor-initiating cells resistant to radiation and TMZ. No second-line therapy was proven to prolong survival after TMZ failure. Magmas (Mitochondria-associated protein involved in granulocyte-macrophage colony-stimulating factor signal transduction) is a subunit of the TIM23 complex regulating precursor protein trafficking into the mitochondrial matrix. Magmas is encoded by pam16, known to be upregulated in human pituitary adenomas, prostate cancer and GBM. Previous studies have demonstrated that Magmas negatively regulates the stimulatory activity of Pam18, which in turn stimulates the ATPase activity of mitochondrial heat shock protein 70 (mtHsp70). No small molecules targeting Magmas are in clinical use. We developed a novel small molecule inhibitor (BT9) that has been specifically designed to inhibit Magmas binding to Pam18. BT9 induces apoptosis through cleavage of caspase-3, reduced mitochondrial respiration and glycolysis. Our recent findings also demonstrate that BT9 treatment reduced protein trafficking of Lon protease into the mitochondrial matrix. Pretreatment of glioma cells with BT9 sensitizes cells to radiation treatment and enhances the TMZ activity. BT9 can cross the blood-brain-barrier and improve survival in intracranial glioma PDX models. BT9 has potential therapeutic value by directly dysregulating mitochondrial function in GBM, enhancing radiation and chemotherapy response, and improving survival in a relevant animal model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiyu Xi ◽  
Pamela S. Jones ◽  
Masaaki Mikamoto ◽  
Xiaobin Jiang ◽  
Alexander T. Faje ◽  
...  

Human pituitary adenomas are one of the most common intracranial neoplasms. Although most of these tumors are benign and can be treated medically or by transsphenoidal surgery, a subset of these tumors are fast-growing, aggressive, recur, and remain a therapeutic dilemma. Because antibodies against immune checkpoint receptors PD-1 and CLTA-4 are now routinely used for cancer treatment, we quantified the expression of mRNA coding for PD-1, CLTA-4, and their ligands, PD-L1, PD-L2, CD80, and CD86 in human pituitary adenomas and normal pituitary glands, with the ultimate goal of exploiting immune checkpoint therapy in aggressive pituitary adenomas. Aggressive pituitary adenomas demonstrated an increased expression of PD-L2, CD80, and CD86 in compared to that of normal human pituitary glands. Furthermore, aggressive pituitary tumors demonstrated significantly higher levels of CD80 and CD86 compared to non-aggressive tumors. Our results establish a rationale for studying a potential role for immune checkpoint inhibition therapy in the treatment of pituitary adenomas.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Andrew Wang ◽  
Stewart G. Neill ◽  
Scott Newman ◽  
Marianna A. Tryfonidou ◽  
Adriana Ioachimescu ◽  
...  

Abstract Background Cushing’s disease (CD) is defined as hypercortisolemia caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (corticotroph PA) that afflicts humans and dogs. In order to map common aberrant genomic features of CD between humans and dogs, we performed genomic sequencing and immunostaining on corticotroph PA. Methods For inclusion, humans and dog were diagnosed with CD. Whole exome sequencing (WES) was conducted on 6 human corticotroph PA. Transcriptome RNA-Seq was performed on 6 human and 7 dog corticotroph PA. Immunohistochemistry (IHC) was complete on 31 human corticotroph PA. Corticotroph PA were compared with normal tissue and between species analysis were also performed. Results Eight genes (MAMLD1, MNX1, RASEF, TBX19, BIRC5, TK1, GLDC, FAM131B) were significantly (P < 0.05) overexpressed across human and canine corticotroph PA. IHC revealed MAMLD1 to be positively (3+) expressed in the nucleus of ACTH-secreting tumor cells of human corticotroph PA (22/31, 70.9%), but absent in healthy human pituitary glands. Conclusions In this small exploratory cohort, we provide the first preliminary insights into profiling the genomic characterizations of human and dog corticotroph PA with respect to MAMLD1 overexpression, a finding of potential direct impact to CD microadenoma diagnosis. Our study also offers a rationale for potential use of the canine model in development of precision therapeutics.


2021 ◽  
Author(s):  
Esra Hatipoglu ◽  
Omur Gunaldi ◽  
Buruc Erkan ◽  
Ayla Avcikurt ◽  
Meral Mert ◽  
...  

Abstract PurposeIn sporadic pituitary adenomas the role of Ubiquitin-specific protease 8 (USP8) is not clearly defined. Although mutations in USP8 gene are known to cause corticotroph adenomas, whether changes in expression of USP8 in other pituitary adenomas have not been clarified, yet. In this study we addressed the changes in USP8 gene expression levels in pituitary adenomas relative to non-adenomatous brain tissue.MethodsUSP8 gene expression analysis was performed on a total of 43 tissue samples from human pituitary adenomas and on 16 tissue samples from non-pituitary brain tissues (control group). Adenomatous tissues and control tissues were assessed for quantification of RNA expression of USP8.The levels of USP8 gene expression were determined relative to those in control group.ResultsUSP8 gene expression levels in pituitary adenomas (PA) were 3.7 times higher than the levels in control brain tissues (CBT) (p = 0.002). Levels of USP8 expression in secertory PA’s were significantly higher in comparison to the levels in CBT (p = 0.002).ConsclusionsPresent findings support that USP8 gene expression levels may contribute to pitutary tumorigenesis and hormonogenesis.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jean-Yves Douet ◽  
Alvina Huor ◽  
Hervé Cassard ◽  
Séverine Lugan ◽  
Naïma Aron ◽  
...  

AbstractTreatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt–Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different. In this study, we characterized the prion strains responsible for hGH-iCJD cases originating from UK (n = 11) and France (n = 11) using human PrP expressing mouse models. The cases included PRNP MM, MV and VV genotypes from both countries. UK and French sporadic CJD (sCJD) cases were included as controls. The prion strains identified following inoculation with hGH-iCJD homogenates corresponded to the two most frequently observed sCJD prion strains (M1CJD and V2CJD). However, in clear contradiction to the initial hypothesis, the prion strains that were identified in the UK and the French hGH-iCJD cases were not radically different. In the vast majority of the cases originating from both countries, the V2CJD strain or a mixture of M1CJD + V2CJD strains were identified. These data strongly support the contention that the differences in the epidemiological and genetic profiles observed in the UK and France hGH-iCJD cohorts cannot be attributed only to the transmission of different prion strains.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2225
Author(s):  
Jiajia Li ◽  
Siqi Wen ◽  
Biao Li ◽  
Na Li ◽  
Xianquan Zhan

To investigate the biological role of protein phosphorylation in human nonfunctional pituitary neuroendocrine tumors (NF-PitNETs), proteins extracted from NF-PitNET and control tissues were analyzed with tandem mass tag (TMT)-based quantitative proteomics coupled with TiO2 enrichment of phosphopeptides. A total of 595 differentially phosphorylated proteins (DPPs) with 1412 phosphosites were identified in NF-PitNETs compared to controls (p < 0.05). KEGG pathway network analysis of 595 DPPs identified nine statistically significant signaling pathways, including the spliceosome pathway, the RNA transport pathway, proteoglycans in cancer, SNARE interactions in vesicular transport, platelet activation, bacterial invasion of epithelial cells, tight junctions, vascular smooth muscle contraction, and protein processing in the endoplasmic reticulum. GO analysis revealed that these DPPs were involved in multiple cellular components (CCs), biological processes (BPs), and molecule functions (MFs). The kinase analysis of 595 DPPs identified seven kinases, including GRP78, WSTF, PKN2, PRP4, LOK, NEK1, and AMPKA1, and the substrate of these kinases could provide new ideas for seeking drug targets for NF-PitNETs. The randomly selected DPP calnexin was further confirmed with immunoprecipitation (IP) and Western blot (WB). These findings provide the first DPP profiling, phosphorylation-mediated molecular network alterations, and the key kinase profiling in NF-PitNET pathogenesis, which are a precious resource for understanding the biological roles of protein phosphorylation in NF-PitNET pathogenesis and discovering effective phosphoprotein biomarkers and therapeutic targets and drugs for the management of NF-PitNETs.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3234
Author(s):  
Gabriel Giardina ◽  
Alexander Micko ◽  
Daniela Bovenkamp ◽  
Arno Krause ◽  
Fabian Placzek ◽  
...  

Pituitary adenomas count among the most common intracranial tumors. During pituitary oncogenesis structural, textural, metabolic and molecular changes occur which can be revealed with our integrated ultrahigh-resolution multimodal imaging approach including optical coherence tomography (OCT), multiphoton microscopy (MPM) and line scan Raman microspectroscopy (LSRM) on an unprecedented cellular level in a label-free manner. We investigated 5 pituitary gland and 25 adenoma biopsies, including lactotroph, null cell, gonadotroph, somatotroph and mammosomatotroph as well as corticotroph. First-level binary classification for discrimination of pituitary gland and adenomas was performed by feature extraction via radiomic analysis on OCT and MPM images and achieved an accuracy of 88%. Second-level multi-class classification was performed based on molecular analysis of the specimen via LSRM to discriminate pituitary adenomas subtypes with accuracies of up to 99%. Chemical compounds such as lipids, proteins, collagen, DNA and carotenoids and their relation could be identified as relevant biomarkers, and their spatial distribution visualized to provide deeper insight into the chemical properties of pituitary adenomas. Thereby, the aim of the current work was to assess a unique label-free and non-invasive multimodal optical imaging platform for pituitary tissue imaging and to perform a multiparametric morpho-molecular metabolic analysis and classification.


2021 ◽  
Author(s):  
Zidong Zhang ◽  
Michel Zamojski ◽  
Gregory R Smith ◽  
Thea L Willis ◽  
Val Yianni ◽  
...  

Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus (sn) RNAseq and ATACseq resource from pediatric, adult, and aged pituitaries (snpituitaryatlas.princeton.edu) and characterize cell type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors (TFs) that are significantly associated with gene expression in PSCs compared to other cell types and within PSCs. Modeling the heterogeneous expression of two markers for committing cell lineages among PSCs shows significant correlation with regulatory domain accessibility for GATA3, but with TF expression for POMC. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zerui Wu ◽  
Yunqiu Xu ◽  
Jiadong Xu ◽  
Jianglong Lu ◽  
Lin Cai ◽  
...  

Cabergoline (CAB) is the first choice for treatment of prolactinoma and the most common subtype of pituitary adenoma. However, drug resistance and lack of effectiveness in other pituitary tumor types remain clinical challenges to this treatment. Brusatol (BT) is known to inhibit cell growth and promote apoptosis in a variety of cancer cells. In our present studies, we investigate the effects of BT on pituitary tumor cell proliferation in vitro and in vivo. BT treatment resulted in an increase in Annexin V-expressing cells and promoted the expression of apoptosis-related proteins in rat and human pituitary tumor cells. Investigation of the mechanism underlying this effect revealed that BT increased the production of reactive oxygen species (ROS) and inhibited the phosphorylation of 4EBP1 and S6K1. Furthermore, treatment with a combination of BT and CAB resulted in greater antitumor effects than either treatment alone in nude mice and pituitary tumor cells. Collectively, our results suggest that the BT-induced ROS accumulation and inhibition of mTORC1 signaling pathway leads to inhibition of tumor growth. Combined use of CAB and BT may increase the clinical effectiveness of treatment for human pituitary adenomas.


Sign in / Sign up

Export Citation Format

Share Document