Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex

1982 ◽  
Vol 43 (3) ◽  
pp. 187-198 ◽  
Author(s):  
J. J. Kulikowski ◽  
S. Marčelja ◽  
P. O. Bishop
1976 ◽  
Vol 16 (8) ◽  
pp. 789-797 ◽  
Author(s):  
V.D. Glezer ◽  
A.M. Cooperman ◽  
V.A. Ivanov ◽  
T.A. Tsherbach

2010 ◽  
Vol 103 (2) ◽  
pp. 677-697 ◽  
Author(s):  
Lionel G. Nowak ◽  
Maria V. Sanchez-Vives ◽  
David A. McCormick

The aim of the present study was to characterize the spatial and temporal features of synaptic and discharge receptive fields (RFs), and to quantify their relationships, in cat area 17. For this purpose, neurons were recorded intracellularly while high-frequency flashing bars were used to generate RFs maps for synaptic and spiking responses. Comparison of the maps shows that some features of the discharge RFs depended strongly on those of the synaptic RFs, whereas others were less dependent. Spiking RF duration depended poorly and spiking RF amplitude depended moderately on those of the underlying synaptic RFs. At the other extreme, the optimal spatial frequency and phase of the discharge RFs in simple cells were almost entirely inherited from those of the synaptic RFs. Subfield width, in both simple and complex cells, was less for spiking responses compared with synaptic responses, but synaptic to discharge width ratio was relatively variable from cell to cell. When considering the whole RF of simple cells, additional variability in width ratio resulted from the presence of additional synaptic subfields that remained subthreshold. Due to these additional, subthreshold subfields, spatial frequency tuning predicted from synaptic RFs appears sharper than that predicted from spiking RFs. Excitatory subfield overlap in spiking RFs was well predicted by subfield overlap at the synaptic level. When examined in different regions of the RF, latencies appeared to be quite variable, but this variability showed negligible dependence on distance from the RF center. Nevertheless, spiking response latency faithfully reflected synaptic response latency.


2020 ◽  
Author(s):  
Jaeson Jang ◽  
Min Song ◽  
Gwangsu Kim ◽  
Se-Bum Paik

AbstractIn higher mammals, the primary visual cortex (V1) is organized into diverse tuning maps of visual features such as orientation, spatial frequency and ocular dominance. The topography of these maps is observed to intersect orthogonally, implying that a developmental principle for efficient tiling of sensory modules may exist. However, it remains unclear how such a systematic relationship among cortical tuning maps could develop. Here, we show that the orthogonal organization of tuning modules already exist in retinal ganglion cell (RGC) mosaics, and that this provides a blueprint of the orthogonal organization in V1. Firstly, from the analysis of multi-electrode recording data in V1, we found that the ON-OFF subregion distance of receptive fields varies periodically across the cortical surface, strongly correlated to ocular dominance and spatial frequency in the area. Further, the ON-OFF alignment angle, that is orthogonal to the ON-OFF distance, appears to correlate with orientation tuning. These suggest that the orthogonal organization in V1 may originate from the spatial organization of the ON-OFF receptive fields in the bottom-up projections, and this scenario was tested from analysis of the RGC mosaics data in monkeys and cats. We found that the ON-OFF RGC distance and ON-OFF angle of neighbouring RGCs are organized into a topographic tiling across mosaics, analogous to the orthogonal intersection of cortical tuning maps. These findings suggest that the regularly structured ON-OFF patterns mirrored from a retina may initiate efficient tiling of functional domains in V1.HighlightsOrthogonal organization of visual tuning maps are observed in both V1 and the retinaCortical tuning maps are correlated with the profile of ON-OFF feedforward projectionsThe profile of ON-OFF receptive fields varies periodically across the V1 surfaceRegularly structured RGC patterns initiate the orthogonal tiling of sensory modules in V1


2016 ◽  
Author(s):  
Inbal Ayzenshtat ◽  
Jesse Jackson ◽  
Rafael Yuste

AbstractThe response properties of neurons to sensory stimuli have been used to identify their receptive fields and functionally map sensory systems. In primary visual cortex, most neurons are selective to a particular orientation and spatial frequency of the visual stimulus. Using two-photon calcium imaging of neuronal populations from the primary visual cortex of mice, we have characterized the response properties of neurons to various orientations and spatial frequencies. Surprisingly, we found that the orientation selectivity of neurons actually depends on the spatial frequency of the stimulus. This dependence can be easily explained if one assumed spatially asymmetric Gabor-type receptive fields. We propose that receptive fields of neurons in layer 2/3 of visual cortex are indeed spatially asymmetric, and that this asymmetry could be used effectively by the visual system to encode natural scenes.Significance StatementIn this manuscript we demonstrate that the orientation selectivity of neurons in primary visual cortex of mouse is highly dependent on the stimulus SF. This dependence is realized quantitatively in a decrease in the selectivity strength of cells in non-optimum SF, and more importantly, it is also evident qualitatively in a shift in the preferred orientation of cells in non-optimum SF. We show that a receptive-field model of a 2D asymmetric Gabor, rather than a symmetric one, can explain this surprising observation. Therefore, we propose that the receptive fields of neurons in layer 2/3 of mouse visual cortex are spatially asymmetric and this asymmetry could be used effectively by the visual system to encode natural scenes.Highlights–Orientation selectivity is dependent on spatial frequency.–Asymmetric Gabor model can explain this dependence.


2007 ◽  
Vol 98 (3) ◽  
pp. 1194-1212 ◽  
Author(s):  
Kota S. Sasaki ◽  
Izumi Ohzawa

The receptive fields of complex cells in the early visual cortex are economically modeled by combining outputs of a quadrature pair of linear filters. For actual complex cells, such a minimal model may be insufficient because many more simple cells are thought to make up a complex cell receptive field. To examine the minimalist model physiologically, we analyzed spatial relationships between the internal structure (subunits) and the overall receptive fields of individual complex cells by a two-stimulus interaction technique. The receptive fields of complex cells are more circular and only slightly larger than their subunits in size. In addition, complex cell subunits occupy spatial extents similar to those of simple cell receptive fields. Therefore in these respects, the minimalist schema is a fair approximation to actual complex cells. However, there are violations against the minimal model. Simple cell receptive fields have significantly fewer subregions than complex cell subunits and, in general, simple cell receptive fields are elongated more horizontally than vertically. This bias is absent in complex cell subunits and receptive fields. Thus simple cells cannot be equated to individual complex cell subunits and spatial pooling of simple cells may occur anisotropically to constitute a complex cell subunit. Moreover, when linear filters for complex cell subunits are examined separately for bright and dark responses, there are significant imbalances and position displacements between them. This suggests that actual complex cell receptive fields are constructed by a richer combination of linear filters than proposed by the minimalist model.


2005 ◽  
Vol 94 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Jose-Manuel Alonso ◽  
Harvey A. Swadlow

A persistent and fundamental question in sensory cortical physiology concerns the manner in which receptive fields of layer-4 neurons are synthesized from their thalamic inputs. According to a hierarchical model proposed more than 40 years ago, simple receptive fields in layer 4 of primary visual cortex originate from the convergence of highly specific thalamocortical inputs (e.g., geniculate inputs with on-center receptive fields overlap the on subregions of layer 4 simple cells). Here, we summarize studies in the visual cortex that provide support for this high specificity of thalamic input to visual cortical simple cells. In addition, we review studies of GABAergic interneurons in the somatosensory “barrel” cortex with receptive fields that are generated by a very different mechanism: the nonspecific convergence of thalamic inputs with different response properties. We hypothesize that these 2 modes of thalamocortical connectivity onto subpopulations of excitatory and inhibitory neurons constitute a general feature of sensory neocortex and account for much of the diversity seen in layer-4 receptive fields.


2004 ◽  
Vol 92 (1) ◽  
pp. 468-476 ◽  
Author(s):  
Dario L. Ringach

The receptive fields of simple cells in visual cortex are composed of elongated on and off subregions. This spatial arrangement is widely thought to be responsible for the generation of orientation selectivity. Neurons with similar orientation preferences cluster in “columns” that tile the cortical surface and form a map of orientation selectivity. It has been proposed that simple cell receptive fields are constructed by the selective pooling of geniculate receptive fields aligned in space. A recent analysis of monosynaptic connections between geniculate and cortical neurons appears to reveal the existence of “wiring rules” that are in accordance with the classical model. The precise origin of the orientation map is unknown, but both genetic and activity-dependent processes are thought to contribute. Here, we put forward the hypothesis that statistical sampling from the retinal ganglion cell mosaic may contribute to the generation of simple cells and provide a blueprint for orientation columns. Results from computer simulations show that the “haphazard wiring” model is consistent with data on the probability of monosynaptic connections and generates orientation columns and maps resembling those found in the cortex. The haphazard wiring hypothesis could be tested by measuring the correlation between the orientation map and the structure of the retinal ganglion cell mosaic of the contralateral eye.


Receptive fields of simple cells in the cat visual cortex have recently been discussed in relation to the ‘theory of communication' proposed by Gabor (1946). A number of investigators have suggested that the line-weighting functions, as measured orthogonal to the preferred orientation, may be best described as the product of a Gaussian envelope and a sinusoid (i.e. a Gabor function). Following Gabor’s theory of ‘basis’ functions, it has also been suggested that simple cells can be categorized into even-and odd-symmetric categories. Based on the receptive field profiles of 46 simple cells recorded from cat visual cortex, our analysis provides a quantitative description of both the receptive-field envelope and the receptive-field ‘symmetry’ of each of the 46 cells. The results support the notion that, to a first approximation, Gabor functions with three free parameters (envelope width, carrier frequency and carrier phase) provide a good description of the receptive-field profiles. However, our analysis does not support the notion that simple cells generally fit into even- and odd-symmetric categories.


1978 ◽  
Vol 18 (7) ◽  
pp. 887-889 ◽  
Author(s):  
V.D. Glezer ◽  
V.E. Gauzelman ◽  
T.A. Tsherbach ◽  
K.N. Dudkin

Sign in / Sign up

Export Citation Format

Share Document