Y-to-X chromosome translocation observed in two generations

1980 ◽  
Vol 55 (1) ◽  
pp. 39-42 ◽  
Author(s):  
H. O. �kesson ◽  
B. Hagberg ◽  
J. Wahlstr�m

genesis ◽  
2017 ◽  
Vol 55 (9) ◽  
pp. e23054 ◽  
Author(s):  
Mingmei Liao ◽  
Junmei Zhou ◽  
Fen Wang ◽  
Yasmin H. Ali ◽  
Kelvin L. Chan ◽  
...  




1991 ◽  
Vol 57 (3) ◽  
pp. 213-226 ◽  
Author(s):  
Ellen M. Heath ◽  
Michael J. Simmons

SummaryTwelve inbred lines derived from an M′ strain of Drosophila melanogaster were used to study the repression of P-element-mediated hybrid dysgenesis. Initial assessments indicated that the lines differed in the ability to repress gonadal dysgenesis, and that this ability was highly correlated with the ability to repress snw hypermutability. Later assessments indicated that most of the lines with low or intermediate repression potential evolved to a state of higher repression potential; however, Southern analyses failed to reveal significant changes in the array of genomic P elements that could account for this evolution. In addition, none of the lines possessed the incomplete P element known as KP, which has been proposed to explain repression in some D. melanogaster strains. One of the lines maintained intermediate repression potential throughout the period of study (52 generations), indicating that the intermediate condition was not intrinsically unstable. Genetic analyses demonstrated that in some of the lines, repression potential was influenced by factors that were inherited maternally through at least two generations; however, these factors were not as influential as those in a classic P cytotype strain. Additional tests with a dysgenesis-inducing X chromosome called T-5 indicated that repression itself was mediated by a combination of maternal effects and paternally inherited factors that were expressed after fertilization. These tests also suggested that in some circumstances, the P transposase, or its message, might be transmitted through the maternal cytoplasm.



1990 ◽  
Vol 37 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Maria Anvret ◽  
Jan Wahlström ◽  
Per Skogsberg ◽  
Bengt Hagberg


2017 ◽  
Vol 20 (1) ◽  
pp. 87-90 ◽  
Author(s):  
M Donat ◽  
A Louis ◽  
K Kreskowski ◽  
M Ziegler ◽  
A Weise ◽  
...  

Abstract Here we report one new case each of an X-autosome translocation (maternally derived), and an X-Y-chromosome translocation. Besides characterizing the involved breakpoints and/or imbalances in detail by molecular cyto-genetics, also skewed X-chromosome inactivation was determined on single cell level using 5-ethynyl-2-deoxyuridine (EdU). Thus, we confirmed that the recently suggested EdU approach can be simply adapted for routine diagnostic use. The latter is important, as only by knowing the real pattern of the skewed X-chromosome inactivation, correct interpretation of obtained results and subsequent reliable genetic counseling, can be done.



Genome ◽  
1990 ◽  
Vol 33 (3) ◽  
pp. 340-347 ◽  
Author(s):  
R. Frankham

For X–Y exchange to be of importance in the coevolution of X and Y rDNA, there must be a mechanism to maintain cytologically normal X chromosomes in the face of continual infusions of X.YL chromosomes produced by X–Y exchanges. Replicated populations were founded with different frequencies of isogenic X and X.YL chromosomes. The X.YL chromosome declined in frequency over time in all lines. Relative fitnesses, estimated from chromosome frequency trajectories, were 0.40, 1.01, and 1.0 for X.YL/X.YL, X.YL/X, and X/X females and 0.75 and 1.0 for X.YL/Y and X/Y males, respectively. The equilibrium frequency for the X.YL chromosome due to the balance between X–Y exchange and selection was predicted to be 4–16 × 10−4. The results strengthen the evidence for the involvement of X–Y exchange in the coevolution of X and Y rDNA arrays. Conditions for the evolution of reproductive isolation by sex-chromosome translocation are much less probable than previously supposed since the X.YL translocation chromosome is at a selective disadvantage to cytologically normal X chromosomes. Additional heterochromatin was not neutral but was only deleterious beyond a threshold, as one dose of the heterochromatic XL arm did not reduce female reproductive fitness, but two doses did.Key words: Drosophila, rRNA, heterochromatin, fitness, speciation.



1969 ◽  
Vol 33 (2) ◽  
pp. 117-124 ◽  
Author(s):  
ANIL K. SINHA ◽  
JAMES J. NORA


2021 ◽  
Vol 22 (16) ◽  
pp. 9074
Author(s):  
Rima Dardik ◽  
Einat Avishai ◽  
Shadan Lalezari ◽  
Assaf A. Barg ◽  
Sarina Levy-Mendelovich ◽  
...  

Introduction: Hemophilia A (HA) is an X-linked bleeding disorder caused by factor VIII (FVIII) deficiency or dysfunction due to F8 gene mutations. HA carriers are usually asymptomatic because their FVIII levels correspond to approximately half of the concentration found in healthy individuals. However, in rare cases, a carrier may exhibit symptoms of moderate to severe HA primarily due to skewed inactivation of her non-hemophilic X chromosome. Aim: The aim of the study was to investigate X-chromosome inactivation (XCI) patterns in HA carriers, with special emphasis on three karyotypically normal HA carriers presenting with moderate to severe HA phenotype due to skewed XCI, in an attempt to elucidate the molecular mechanism underlying skewed XCI in these symptomatic HA carriers. The study was based on the hypothesis that the presence of a pathogenic mutation on the non-hemophilic X chromosome is the cause of extreme inactivation of that X chromosome. Methods: XCI patterns were studied by PCR analysis of the CAG repeat region in the HUMARA gene. HA carriers that demonstrated skewed XCI were further studied by whole-exome sequencing (WES) followed by X chromosome-targeted bioinformatic analysis. Results: All three HA carriers presenting with the moderate to severe HA phenotype due to skewed XCI were found to carry pathogenic mutations on their non-hemophilic X chromosomes. Patient 1 was diagnosed with a frameshift mutation in the PGK1 gene that was associated with familial XCI skewing in three generations. Patient 2 was diagnosed with a missense mutation in the SYTL4 gene that was associated with familial XCI skewing in two generations. Patient 3 was diagnosed with a nonsense mutation in the NKAP gene that was associated with familial XCI skewing in two generations. Conclusion: Our results indicate that the main reason for skewed XCI in our female HA patients was negative selection against cells with a disadvantage caused by an additional deleterious mutation on the silenced X chromosome, thus complicating the phenotype of a monogenic X-linked disease. Based on our study, we are currently offering the X inactivation test to symptomatic hemophilia carriers and plan to expand this approach to symptomatic carriers of other X-linked diseases, which can be further used in pregnancy planning.





Sign in / Sign up

Export Citation Format

Share Document