Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation

1994 ◽  
Vol 119 (2) ◽  
pp. 285-295 ◽  
Author(s):  
S. B. Joye ◽  
H. W. Paerl
2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Michael D. Lee ◽  
Eric A. Webb ◽  
Nathan G. Walworth ◽  
Fei-Xue Fu ◽  
Noelle A. Held ◽  
...  

ABSTRACTTrichodesmiumis a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs,Trichodesmiumserves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated withTrichodesmium erythraeum(strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO2concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO2, potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community withinTrichodesmiumconsortia.IMPORTANCETrichodesmiumis a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of theTrichodesmiumgenus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies betweenTrichodesmiumand its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association withTrichodesmium.


2010 ◽  
Vol 409 ◽  
pp. 1-15 ◽  
Author(s):  
VJ Bertics ◽  
JA Sohm ◽  
T Treude ◽  
CET Chow ◽  
DG Capone ◽  
...  

2011 ◽  
Vol 8 (5) ◽  
pp. 10423-10457 ◽  
Author(s):  
J. Telling ◽  
M. Stibal ◽  
A. M. Anesio ◽  
M. Tranter ◽  
I. Nias ◽  
...  

Abstract. Microbial nitrogen cycling was investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) in early August 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes within 7.5 km of the ice sheet margin suggested microbial uptake and ammonification respectively. Nitrogen fixation (<4.2 μmoles C2H4 m−2 day−1 to 16.3 μmoles C2H4 m−2 day−1) was active in some cryoconite holes at sites up to 5.7 km from the ice sheet margin, with nitrogen fixation inversely correlated to concentrations of inorganic nitrogen. There may be the potential for the zone of nitrogen fixation to progressively extend further into the interior of the GrIS as the melt season progresses as reserves of available nitrogen are depleted. Estimated annual inputs of nitrogen from nitrogen fixation along the transect were at least two orders of magnitude lower than inputs from precipitation, with the exception of a 100 m long marginal debris-rich zone where nitrogen fixation could potentially equal or exceed that of precipitation. The average estimated contribution of nitrogen fixation to the nitrogen demand of net microbial growth at sites along the transect ranged from 0% to 17.5%.


1994 ◽  
pp. 325-337 ◽  
Author(s):  
Hans W. Paerl ◽  
Brad M. Bebout ◽  
Carolyn A. Currin ◽  
Matthew W. Fitzpatrick ◽  
James L. Pinckney

2001 ◽  
Vol 46 (4) ◽  
pp. 821-832 ◽  
Author(s):  
Michelle Graco ◽  
Laura Farías ◽  
Verónica Molina ◽  
Dimitri Gutiérrez ◽  
Lars Peter Nielsen

2021 ◽  
Author(s):  
P. Maza-Márquez ◽  
M. D. Lee ◽  
A. M. Detweiler ◽  
B. M. Bebout

AbstractMicrobial mats are modern analogues of the first ecosystems on the Earth. As extant representatives of microbial communities where free oxygen may have first been available on a changing planet, they offer an ecosystem within which to study the evolution of biogeochemical cycles requiring and inhibited by oxygen. Here, we report the distribution of genes involved in nitrogen metabolism across a vertical oxygen gradient at 1 mm resolution in a microbial mat using quantitative PCR (qPCR), retro-transcribed qPCR (RT-qPCR) and metagenome sequencing. Vertical patterns in the presence and expression of nitrogen cycling genes, corresponding to oxygen requiring and non-oxygen requiring nitrogen metabolism, could be seen across gradients of dissolved oxygen and ammonium. Metagenome analysis revealed that genes annotated as hydroxylamine dehydrogenase (proper enzyme designation EC 1.7.2.6, hao) and hydroxylamine reductase (hcp) were the most abundant nitrogen metabolism genes in the mat. The recovered hao genes encode hydroxylamine dehydrogenase EC 1.7.2.6 (HAO) proteins lacking the tyrosine residue present in aerobic ammonia oxidizing bacteria (AOB). Phylogenetic analysis confirmed that those proteins were more closely related to ɛHao protein present in Campylobacterota lineages (previously known as Epsilonproteobacteria) rather than oxidative HAO of AOB. BLAST analysis of some transcribed proteins indicated that they likely functioned as a nitrate reductase. The presence of hao sequences related with ɛHao protein, as well as numerous hcp genes encoding a prismane protein, suggest the presence of a nitrogen cycling pathway previously described in Nautilia profundicola as ancestral to the most commonly studied present day nitrogen cycling pathways.


Sign in / Sign up

Export Citation Format

Share Document