scholarly journals Microbial nitrogen cycling on the Greenland Ice Sheet

2011 ◽  
Vol 8 (5) ◽  
pp. 10423-10457 ◽  
Author(s):  
J. Telling ◽  
M. Stibal ◽  
A. M. Anesio ◽  
M. Tranter ◽  
I. Nias ◽  
...  

Abstract. Microbial nitrogen cycling was investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) in early August 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes within 7.5 km of the ice sheet margin suggested microbial uptake and ammonification respectively. Nitrogen fixation (<4.2 μmoles C2H4 m−2 day−1 to 16.3 μmoles C2H4 m−2 day−1) was active in some cryoconite holes at sites up to 5.7 km from the ice sheet margin, with nitrogen fixation inversely correlated to concentrations of inorganic nitrogen. There may be the potential for the zone of nitrogen fixation to progressively extend further into the interior of the GrIS as the melt season progresses as reserves of available nitrogen are depleted. Estimated annual inputs of nitrogen from nitrogen fixation along the transect were at least two orders of magnitude lower than inputs from precipitation, with the exception of a 100 m long marginal debris-rich zone where nitrogen fixation could potentially equal or exceed that of precipitation. The average estimated contribution of nitrogen fixation to the nitrogen demand of net microbial growth at sites along the transect ranged from 0% to 17.5%.

2012 ◽  
Vol 9 (7) ◽  
pp. 2431-2442 ◽  
Author(s):  
J. Telling ◽  
M. Stibal ◽  
A. M. Anesio ◽  
M. Tranter ◽  
I. Nias ◽  
...  

Abstract. Nitrogen inputs and microbial nitrogen cycling were investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) during the main ablation season in summer 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes on Leverett Glacier, within 7.5 km of the ice sheet margin, suggested microbial uptake and ammonification respectively. Positive in situ acetylene assays indicated nitrogen fixation both in a debris-rich 100 m marginal zone and up to 5.7 km upslope on Leverett Glacier (with rates up to 16.3 μmoles C2H4 m−2 day−1). No positive acetylene assays were detected > 5.7 km into the ablation zone of the ice sheet. Potential nitrogen fixation only occurred when concentrations of dissolved and sediment-bound inorganic nitrogen were undetectable. Estimates of nitrogen fluxes onto the transect suggest that nitrogen fixation is likely of minor importance to the overall nitrogen budget of Leverett Glacier and of negligible importance to the nitrogen budget on the main ice sheet itself. Nitrogen fixation is however potentially important as a source of nitrogen to microbial communities in the debris-rich marginal zone close to the terminus of the glacier, where nitrogen fixation may aid the colonization of subglacial and moraine-derived debris.


2019 ◽  
Vol 16 (16) ◽  
pp. 3283-3296 ◽  
Author(s):  
Alexandra T. Holland ◽  
Christopher J. Williamson ◽  
Fotis Sgouridis ◽  
Andrew J. Tedstone ◽  
Jenine McCutcheon ◽  
...  

Abstract. Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93 % of the total dissolved nitrogen and 67 % of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0 µM for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14 µM for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05 µM for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12 µM for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 µM, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07 µM for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 µM, medium: 173 µM and high: 242 µM) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 µM, respectively). We speculate that the architecture of the weathering crust, which impacts on water flow paths and storage in the melting surface ice and/or the production of extracellular polymeric substances (EPS), containing both N and P in conjunction with C, is responsible for the temporary retention of DON and DOP in the melting surface ice. The unusual presence of measurable DIP and DIN, principally as NH4+, in the melting surface ice environments suggests that factors other than macronutrient limitation are controlling the extent and magnitude of the glacier algae.


2016 ◽  
Author(s):  
J. L. Wadham ◽  
J. Hawkings ◽  
J. Telling ◽  
D. Chandler ◽  
J. Alcock ◽  
...  

Abstract. Fjord and continental shelf environments in the Polar Regions are host to some of the planet’s most productive ecosystems, and support economically important fisheries. Their productivity, however, is often critically dependent upon nutrient supply from up-stream terrestrial environments delivered via river systems. One of the most extensive glacially-fed coastal ecosystems is that bordering the Greenland Ice Sheet. The future primary productivity of this marine ecosystem, however, is uncertain. A potential increase in primary productivity driven by reduced sea ice extent and associated increased light levels may be curtailed by insufficient nutrient supply, and specifically nitrogen. Research on small valley glaciers indicates that glaciers are important sources of nitrogen to downstream environments. However, no data exists from ice sheet systems such as Greenland. Time series of nitrogen concentrations in runoff are documented from a large Greenland glacier, demonstrating seasonally elevated fluxes to the ocean. Fluxes are highest in mid-summer, when nitrogen limitation is commonly reported in coastal waters. It is estimated that approximately half of the glacially-exported nitrogen is sourced from microbial activity within glacial sediments at the surface and bed of the ice sheet, doubling nitrogen fluxes in runoff. Summer dissolved inorganic nitrogen fluxes from the Greenland Ice Sheet (30–40 Gg) are a similar order of magnitude to those from a large Arctic river (40 Gg, Holmes et al., 2012). Nitrogen yields from the ice sheet (100–160 kg TDN km−2 a−1), however, are approximately double those from Arctic riverine catchments. We assert that this ice sheet nitrogen subsidy to Arctic coastal ecosystems may be important for understanding coastal biodiversity, productivity and fisheries, and should be considered in future biogeochemical modelling studies of coastal marine productivity in the Arctic regions.


2016 ◽  
Vol 13 (22) ◽  
pp. 6339-6352 ◽  
Author(s):  
Jemma Louise Wadham ◽  
Jonathan Hawkings ◽  
Jon Telling ◽  
Dave Chandler ◽  
Jon Alcock ◽  
...  

Abstract. Fjord and continental shelf environments in the polar regions are host to some of the planet's most productive ecosystems and support economically important fisheries. Their productivity, however, is often critically dependent upon nutrient supply from upstream terrestrial environments delivered via river systems. In glacially fed coastal ecosystems, riverine nutrients are largely sourced from melting snow and ice. The largest and most extensive glacially fed coastal ecosystem in the Arctic is that bordering the Greenland Ice Sheet. The future primary productivity of this ecosystem, however, is uncertain. A potential increase in primary productivity driven by reduced sea ice extent and associated increased light levels may be curtailed by insufficient nutrient supply, and specifically nitrogen. Research on small valley glaciers indicates that glaciers are important sources of nitrogen to downstream environments. However, no data exist from ice sheet systems such as Greenland. Time series of nitrogen concentrations in runoff are documented from a large Greenland glacier, demonstrating seasonally elevated fluxes to the ocean. Fluxes are highest in mid-summer, when nitrogen limitation is commonly reported in coastal waters. It is estimated that approximately half of the glacially exported nitrogen is sourced from microbial activity within glacial sediments at the surface and bed of the ice sheet, doubling nitrogen fluxes in runoff. Summer dissolved inorganic nitrogen fluxes from the Greenland Ice Sheet (30–40 Gg) are a similar order of magnitude to those from a large Arctic river (Holmes et al., 2012). Nitrogen yields from the ice sheet (236 kg TDN km−2 a−1), however, are approximately double those from Arctic riverine catchments. We assert that this ice sheet nitrogen subsidy to Arctic coastal ecosystems may be important for understanding coastal biodiversity, productivity and fisheries and should be considered in future biogeochemical modelling studies of coastal marine productivity in the Arctic regions.


Author(s):  
Henrik Højmark Thomsen ◽  
Niels Reeh ◽  
Ole B. Olesen ◽  
Carl Egede Bøggilde ◽  
Wolfgang Starzer ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Højmark Thomsen, H., Reeh, N., Olesen, O. B., Egede Bøggilde, C., Starzer, W., Weidick, A., & Higgins, A. K. (1997). The Nioghalvfjerdsfjorden glacier project, North-East Greenland: a study of ice sheet response to climatic change. Geology of Greenland Survey Bulletin, 176, 95-103. https://doi.org/10.34194/ggub.v176.5073 _______________ Glaciological research was initiated in 1996 on the floating glacier tongue filling Nioghalvfjerdsfjorden in NorthEast Greenland (Fig. 1), with the aim of acquiring a better understanding of the response of the Greenland ice sheet (Inland Ice) to changing climate, and the implications for future sea level. The research is part of a three year project (1996–98) to advance research into the basic processes that contribute to changes in the ocean volume with a changing climate. Five nations are participants in the project, which is supported by the European Community (EC) Environment and Climate Programme. The Geological Survey of Denmark and Greenland (GEUS) and the Danish Polar Center are the Danish partners in the project, both with integrated research themes concentrated on and around Nioghalvfjerdsfjorden.


Author(s):  
Patrick J. Applegate ◽  
K. Keller

Engineering the climate through albedo modification (AM) could slow, but probably would not stop, melting of the Greenland Ice Sheet. Albedo modification is a technology that could reduce surface air temperatures through putting reflective particles into the upper atmosphere. AM has never been tested, but it might reduce surface air temperatures faster and more cheaply than reducing greenhouse gas emissions. Some scientists claim that AM would also prevent or reverse sea-level rise. But, are these claims true? The Greenland Ice Sheet will melt faster at higher temperatures, adding to sea-level rise. However, it's not clear that reducing temperatures through AM will stop or reverse sea-level rise due to Greenland Ice Sheet melting. We used a computer model of the Greenland Ice Sheet to examine its contributions to future sea level rise, with and without AM. Our results show that AM would probably reduce the rate of sea-level rise from the Greenland Ice Sheet. However, sea-level rise would likely continue even with AM, and the ice sheet would not regrow quickly. Albedo modification might buy time to prepare for sea-level rise, but problems could arise if policymakers assume that AM will stop sea-level rise completely.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


Author(s):  
Libo Wang ◽  
Martin Sharp ◽  
Benoit Rivard ◽  
Konrad Steffen

2021 ◽  
Author(s):  
Jon R. Hawkings ◽  
Benjamin S. Linhoff ◽  
Jemma L. Wadham ◽  
Marek Stibal ◽  
Carl H. Lamborg ◽  
...  

AbstractThe Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km−2 year−1) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km−2 year−1). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year−1), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year−1). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming.


Sign in / Sign up

Export Citation Format

Share Document