Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster

1993 ◽  
Vol 23 (3) ◽  
pp. 187-191 ◽  
Author(s):  
Eckhard Boles ◽  
Friedrich K. Zimmermann
1984 ◽  
Vol 4 (11) ◽  
pp. 2535-2539
Author(s):  
W Y Chooi ◽  
E Otaka

Specific antibodies directed against Drosophila melanogaster acidic ribosomal protein S14 were used in a comparative study of eucaryotic and procaryotic ribosomes by immunoblotting and enzyme-linked immunosorbent assays. Common antigenic determinants and, thus, structural homology were found between D. melanogaster, Saccharomyces cerevisiae (S25), rabbit liver (S12), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomes.


1984 ◽  
Vol 4 (11) ◽  
pp. 2535-2539 ◽  
Author(s):  
W Y Chooi ◽  
E Otaka

Specific antibodies directed against Drosophila melanogaster acidic ribosomal protein S14 were used in a comparative study of eucaryotic and procaryotic ribosomes by immunoblotting and enzyme-linked immunosorbent assays. Common antigenic determinants and, thus, structural homology were found between D. melanogaster, Saccharomyces cerevisiae (S25), rabbit liver (S12), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomes.


Author(s):  
Justyna Mikuła-Pietrasik ◽  
Martyna Pakuła ◽  
Małgorzata Markowska ◽  
Paweł Uruski ◽  
Ludwina Szczepaniak-Chicheł ◽  
...  

Abstract Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.


1998 ◽  
Vol 331 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Graeme J. THOMSON ◽  
Geoffrey J. HOWLETT ◽  
Alison E. ASHCROFT ◽  
Alan BERRY

The gene encoding the Escherichia coli Class I fructose-1,6-bisphosphate aldolase (FBP aldolase) has been cloned and the protein overproduced in high amounts. This gene sequence has previously been identified as encoding an E. coli dehydrin in the GenBank™ database [gene dhnA; entry code U73760; Close and Choi (1996) Submission to GenBank™]. However, the purified protein overproduced from the dhnA gene shares all its properties with those known for the E. coli Class I FBP aldolase. The protein is an 8–10-mer with a native molecular mass of approx. 340 kDa, each subunit consisting of 349 amino acids. The Class I enzyme shows low sequence identity with other known FBP aldolases, both Class I and Class II (in the order of 20%), which may be reflected by some novel properties of this FBP aldolase. The active-site peptide has been isolated and the Schiff-base-forming lysine residue (Lys236) has been identified by a combination of site-directed mutagenesis, kinetics and electrospray-ionization MS. A second lysine residue (Lys238) has been implicated in substrate binding. The cloning of this gene and the high levels of overexpression obtained will facilitate future structure–function studies.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


Sign in / Sign up

Export Citation Format

Share Document