Influence of the ratio of the initial substrate concentration to biomass concentration on the performance of a sequencing batch reactor

1996 ◽  
Vol 14 (3) ◽  
pp. 131-137 ◽  
Author(s):  
R. Ghigliazza ◽  
A. Lodi ◽  
A. Converti ◽  
C. Nicolella ◽  
M. Rovatti
1999 ◽  
Vol 40 (8) ◽  
pp. 9-15 ◽  
Author(s):  
Gloria Moreno ◽  
Arturo Cruz ◽  
Germán Buitrón

The effect of the substrate/microorganism ratio during the development of anaerobic activity test was studied. The experimentation was carried out in serum bottles at 35°C. Two sets of experiments utilizing acetate and an azo dye (blue disperse 79) as the sole source of carbon were studied. It was observed that mixing has an important influence on the results. The initial substrate concentration and the initial biomass concentration had a significant effect on the reaction rate and on the biomass yield coefficient, Yobs. Different kinetic coefficients were found for the case of equal So/Xo ratio, but different initial substrate concentration.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2429-2432 ◽  
Author(s):  
R. R. Dague ◽  
C. E. Habben ◽  
S. R. Pidaparti

This research focuses on an evaluation of the performance of a new process being called the “anaerobic sequencing batch reactor” (ASBR). The ASBR operates on an intermittent, fill and draw regimen. This results in alternating high substrate/low substrate (feast/famine) conditions. The high substrate conditions right after feeding results in high rates of substrate conversion to biogas. The low substrate concentration near the end of the react sequence results in efficient bioflocculation and solids separation.


1974 ◽  
Vol 143 (3) ◽  
pp. 779-781 ◽  
Author(s):  
Peter F. J. Newman ◽  
Gordon L. Atkins ◽  
Ian A. Nimmo

Systematic errors in initial substrate concentration (s0), product concentration and reaction time give much larger errors in the Michaelis–Menten parameters unless s0 is treated as an unknown parameter. These errors are difficult to detect because the fitted curve deviates little from the data. The effect of non-enzymic reaction is also examined.


Author(s):  
Rustiana Yuliasni ◽  
Nur Zen ◽  
Nanik Indah Setianingsih

This study aimed to identify the effect of substrate concentration on the performance of A Three chambers Microbial Salinity Cell (a three chambers MSC). In this study, 3 three chambers MSC was made of plexy glass with total volume of 200 ml.  Alumunium wrapped with with platinum on vulcan carbon cloth were used as electrodes,with each working area 63 cm2. The results showed that a Three chambers Microbial Salinity Cell was able to generate electricity and at the same time removed salinity. The degree of electricity deneration and salinity removal were influenced by initial substrate concentration in the anode chamber. The higher substrate concentration, the better performance of MSC. The best performance of MSC achieved when COD was 2034 mg/L, resulted in maximum  voltage of 0. 44 V, and  maximum current density of 0.29 mA/m2. With % CE was 5.4%. The maximum conductivity increase in salinity chamber was  from 11.2 µS/cm  to 1027 µS/cm (salinity 0.57% ppt).


2013 ◽  
Vol 704 ◽  
pp. 12-17
Author(s):  
Zhi Min Ou ◽  
Wen Fei Feng ◽  
Li Xu

S)-tert-butyl 3-hydroxybutyrate was synthesized by asymmetric reduction of tert-butyl acetoacetate with Saccharomyces cerevisiae B5 as catalyst. The enantiometric excess of (S)-tert-butyl 3-hydroxybutyrate increased with addition of more amount of substrate. High optical purity of product can be obtained when 6 g/L chloroform was used as inhibitor. The optimum reduction time, temperature, and initial pH of reaction mixture were 60 h, 30 °C, and 6.2. Addition of more biomass and lower amount of substrate helped to get high conversion. Conversion and enantiometric excess of product reached 100% when initial substrate concentration and biomass were 2.0 g/L and 140 g/L with 6 g/L chloroform as inhibitor.


Sign in / Sign up

Export Citation Format

Share Document