The Na+/K+ pump of cardiac Purkinje cells is preferentially fuelled by glycolytic ATP production

1993 ◽  
Vol 422 (4) ◽  
pp. 380-385 ◽  
Author(s):  
H. G. Glitsch ◽  
A. Tappe
1980 ◽  
Vol 238 (4) ◽  
pp. H561-H568
Author(s):  
S. R. Houser ◽  
A. R. Freeman

Volumetric properties of canine cardiac Purkinje fibers were examined. Purkinje cells were superfused with anisosmolar solutions, and changes in extracellular space and relative cell volume were determined. The relationship between cellular volume and the osmolarity of the bathing medium was shown to be linear except in solutions of very low osmolarity. A linear regression line crossed the volume axis at 38%, suggesting an osmometric dead space of 38% and correspondingly an osmometric compartment comprising about 62% of the cell interior. To determine the volumetric properties of the "electrophysiological compartment," Purkinje cells were impaled with voltage-sensitive microelectrodes, and cellular resting potentials were recorded. When log K was plotted against resting potential (Em) in preparations bathed in normal and hyperosmotic solutions, it was shown that Em was increased in hyperosmotic solutions (13.5 and 21 mV in 600 and 850 mosM solutions, respectively). Calculations using the Nernst equation showed that the compartment containing the intracellular K involved in membrane electrical events behaves as a near-perfect osmometer in hyperosmotic solutions. Changes in the osmometric compartment were well correlated with K changes in the electrophysiological compartment, thus suggesting that the K is homogeneously distributed intracellularly.


1984 ◽  
Vol 16 ◽  
pp. iv-iv
Author(s):  
E CANALE ◽  
J CAMPBELL ◽  
G CAMPBELL

Stem Cells ◽  
2015 ◽  
Vol 33 (4) ◽  
pp. 1102-1112 ◽  
Author(s):  
Karen Maass ◽  
Akshay Shekhar ◽  
Jia Lu ◽  
Guoxin Kang ◽  
Fiona See ◽  
...  

2021 ◽  
Vol 1868 (1) ◽  
pp. 118854
Author(s):  
David A. Patten ◽  
Shawn McGuirk ◽  
Ujval Anilkumar ◽  
Ghadi Antoun ◽  
Karan Gandhi ◽  
...  

2004 ◽  
Vol 61 (9) ◽  
pp. 1106-1113 ◽  
Author(s):  
A. O. Verkerk ◽  
R. Wilders ◽  
J. H. Ravesloot

2002 ◽  
Vol 283 (6) ◽  
pp. H2495-H2503 ◽  
Author(s):  
Wei Han ◽  
Liming Zhang ◽  
Gernot Schram ◽  
Stanley Nattel

Cardiac Purkinje fibers play an important role in cardiac arrhythmias, but no information is available about ionic currents in human cardiac Purkinje cells (PCs). PCs and midmyocardial ventricular myocytes (VMs) were isolated from explanted human hearts. K+ currents were evaluated at 37°C with whole cell patch clamp. PCs had clear inward rectifier K+current ( I K1), with a density not significantly different from VMs between −110 and −20 mV. A Cs+-sensitive, time-dependent hyperpolarization-activated current was measurable negative to −60 mV. Transient outward current ( I to) density was smaller, but end pulse sustained current ( I sus) was larger, in PCs vs. VMs. I to recovery was substantially slower in PCs, leading to strong frequency dependence. Unlike VM I to, which was unaffected by 10 mM tetraethylammonium, Purkinje I to was strongly inhibited by tetraethylammonium, and Purkinje I to was 10-fold more sensitive to 4-aminopyridine than VM. PC I sus was also reduced strongly by 10 mM tetraethylammonium. In conclusion, human PCs demonstrate a prominent I K1, a time-dependent hyperpolarization-activated current, and an I towith pharmacological sensitivity and recovery kinetics different from those in the atrium or ventricle and compatible with a different molecular basis.


1990 ◽  
Vol 258 (6) ◽  
pp. F1608-F1615 ◽  
Author(s):  
K. G. Dickman ◽  
L. J. Mandel

The effects of inhibition of mitochondrial energy production at various points along the respiratory chain on glycolytic lactate production and transport function were examined in a suspension of purified rabbit renal proximal tubules. Paradoxically, partial blockage at site 3 by hypoxia (1% O2) induced lactate production, whereas total site 3 blockage by anoxia (0% O2) failed to stimulate glycolysis. Compared with anoxia, hypoxic tubules exhibited greater preservation of ATP and K+ contents during O2 deprivation and more fully recovered oxidative metabolism and transport function during reoxygenation. The mitochondrial site 1 inhibitor rotenone and the uncoupler carbonyl cyanide-p-trifluorome-thoxyphenylhydrazone (FCCP) were equipotent stimuli for lactate production, whereas the site 2 inhibitor antimycin A failed to stimulate glycolysis despite a 90% inhibition of O2 consumption. Compared with antimycin A, treatment with rotenone or FCCP resulted in less cell injury [measured by lactate dehydrogenase (LDH) release] and greater preservation of cell K+ and ATP contents. 2-Deoxyglucose blocked lactate production by 50% in the presence of rotenone and increased LDH release, suggesting that glycolytic ATP is partially protective. Addition of ouabain during rotenone treatment reduced lactate production by 50%, indicating that glycolytic ATP can be used to fuel the Na pump when mitochondrial ATP production is inhibited. We conclude that 1) proximal tubules can generate lactate during inhibition of oxidative metabolism by hypoxia, rotenone, or FCCP; 2) mitochondrial inhibition is not obligatorily linked to activation of glycolysis, since neither anoxia nor antimycin A stimulate lactate production; 3) when ATP can be produced through anaerobic glycolysis it serves to protect cell viability and transport function during respiratory inhibition.


Sign in / Sign up

Export Citation Format

Share Document