The relationship between leaf water potential ? leaf and the levels of abscisic acid and ethylene in excised wheat leaves

Planta ◽  
1977 ◽  
Vol 134 (2) ◽  
pp. 183-189 ◽  
Author(s):  
S. T. C. Wright
2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


2016 ◽  
Vol 88 (suppl 1) ◽  
pp. 549-563 ◽  
Author(s):  
BRUNO H.P. ROSADO ◽  
EDUARDO A. DE MATTOS

ABSTRACT Among the effects of environmental change, the intensification of drought events is noteworthy, and tropical vegetation is predicted to be highly vulnerable to it. However, it is not clear how tropical plants in drought-prone habitats will respond to this change. In a coastal sandy plain environment, we evaluated the response of six plant species to water deficits across seasons, the relationship between their morpho-physiological traits, and which traits would be the best descriptors of plants' response to drought. Regardless of leaf succulence and phenology, responses between seasons were most strongly related to chlorophyll fluorescence. In this study we have demonstrated that a better comprehension of how tropical species from drought-prone habitats cope with changes in water availability can be based on seasonal variation in leaf water potential and chlorophyll fluorescence. Temporal variation in leaf water potential and chlorophyll fluorescence was found useful for differentiating between groups of sandy soil species that are responsive or unresponsive to water availability. However, chlorophyll fluorescence appeared to be a more sensitive descriptor of their seasonal and short-term responses.


1978 ◽  
Vol 56 (13) ◽  
pp. 1537-1539 ◽  
Author(s):  
I. F. Ike ◽  
G. W. Thurtell ◽  
K. R. Stevenson

The relationship between leaf water potential (ψL) and transpiration rate (T) was investigated using indoor-grown cassava plants (Manihot esculenta Crantz cv. Llanera). Leaf water potentials were measured with in situ dew-point hygrometer and transpiration rates by gas exchange analysis technique.Regression analyses of the data showed that T was consistently linearly related to ψL (r2 = 0.94). This implies that the plant resistance to flow was constant and hence that an Ohm's Law analog is valid for the transpiration range studied. Extrapolated values of leaf water potential at zero transpiration were close to the osmotic potential of the nutrient solution. Calculated resistance values (slope of regression line for individual plants) varied between 2.90 and 3.05 bars dm2 h g−1 (1 bar = 100 kPa).


1994 ◽  
Vol 72 (10) ◽  
pp. 1535-1540 ◽  
Author(s):  
L. van Rensburg ◽  
G. H. J. Krüger

The efficacy of various aspects of abscisic acid and proline accumulation as potential selection parameters for drought tolerance in tobacco was evaluated under controlled conditions. The results indicated that both abscisic acid (though being less pronounced) and proline accumulate rapidly after a distinct threshold leaf water potential value has been reached and that probably because of their higher cell wall elasticity (0.23 and 0.28 MPa for the drought-tolerant cultivars GS46 and Elsoma, respectively, compared with 0.39 and 0.31 MPa for the drought-sensitive cultivars TL33 and CDL28, respectively) these threshold leaf water potential values are reached sooner in drought-tolerant cultivars. However, abscisic acid accumulation precedes proline accumulation in both the drought-tolerant and drought-sensitive cultivars. Proline concentrations increased sharply at a leaf water potential of ca. −1.27 MPa in the drought-tolerant cultivars and at a leaf water potential of ca. −1.50 MPa in the drought-sensitive cultivars. At a leaf water potential of −0.77 MPa the abscisic acid concentrations of all four cultivars were already significantly higher than those of their respective controls and were greater in the drought-tolerant cultivars. The leaf water potential value at which abscisic acid and proline start accumulating rapidly and the accumulated proline end concentrations are recommended as selection parameters for drought tolerance in tobacco. Key words: abscisic acid accumulation, cell-wall elasticity, drought stress, Nicotiana tabacum L., proline accumulation, selection parameters.


2001 ◽  
Vol 93 (6) ◽  
pp. 1341-1343 ◽  
Author(s):  
Kamal G. Yatapanage ◽  
Hwat Bing So

Sign in / Sign up

Export Citation Format

Share Document