The application of CARS for temperature measurements in high pressure combustion systems

1990 ◽  
Vol 50 (6) ◽  
pp. 519-525 ◽  
Author(s):  
M. Woyde ◽  
W. Stricker
2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Harika S. Kahveci ◽  
Kevin R. Kirtley

This paper compares predictions from a 3D Reynolds-averaged Navier–Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, the wall temperature, and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically modeled temperature profiles to generate the inlet boundary conditions for the computational fluid dynamics analysis, the sensitivity of blade heat transfer predictions due to the variation in the inlet temperature profile and uncertainty in wall temperature measurements and surface roughness is calculated. All predictions are performed with and without cooling. Heat transfer predictions match reasonably well with the statistical representation of the data, both with and without cooling. Predictive precision for this study is driven primarily by inlet profile uncertainty followed by surface roughness and gauge position uncertainty.


1993 ◽  
Vol 97 (12) ◽  
pp. 1608-1618 ◽  
Author(s):  
W. Stricker ◽  
M. Woyde ◽  
R. Lückerath ◽  
V. Bergmann

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Patrick Nau ◽  
Simon Görs ◽  
Christoph Arndt ◽  
Benjamin Witzel ◽  
Torsten Endres

Abstract Wall temperature measurements with fiber coupled online phosphor thermometry were, for the first time, successfully performed in a full-scale H-class Siemens gas turbine combustor. Online wall temperatures were obtained during high-pressure combustion tests up to 8 bar at the Siemens Clean Energy Center (CEC) test facility. Since optical access to the combustion chamber with fibers being able to provide high laser energies is extremely challenging, we developed a custom-built measurement system consisting of a water-cooled fiber optic probe and a mobile measurement container. A suitable combination of chemical binder and thermographic phosphor was identified for temperatures up to 1800 K on combustor walls coated with a thermal barrier coating (TBC). To our knowledge, these are the first measurements reported with fiber coupled online phosphor thermometry in a full-scale high-pressure gas turbine combustor. Details of the setup and the measurement procedures will be presented. The measured signals were influenced by strong background emissions probably from CO*2 chemiluminescence. Strategies for correcting background emissions and data evaluation procedures are discussed. The presented measurement technique enables the detailed study of combustor wall temperatures and using this information an optimization of the gas turbine cooling design.


2019 ◽  
Vol 11 ◽  
pp. 110006
Author(s):  
K. Ishigaki ◽  
J. Gouchi ◽  
S. Nagasaki ◽  
J. G. Cheng ◽  
Y. Uwatoko

The two-stage 6-8 multi-anvil (MA8) apparatus is an important large-volume, high-pressure technique that has been widely used in the high pressure mineralogy and material synthesis, mainly at room temperature or above. Recently, we have successfully developed a two-stage MA8 apparatus for low-temperature physical property measurements. The first-stage anvils at top and bottom sides are fabricated as a single piece in order to reduce the total size of the cylindrical module, which is put in a top-loading high pressure cryostat and compressed by a 1000 ton hydraulic press. A castable, split octahedral gasket with integrated fin was specifically designed in order to introduce the electrical leads from the inside sample container filled with a liquid pressure transmitting medium. By using tungsten carbide (WC) second-stage cubes with a truncated edge length of 3 mm and an octahedral gasket with an edge length of 6 mm, we have successfully generated pressure over 20 GPa at room temperature. Since the high pressure limit can be pushed to nearly 100 GPa by using the sintered diamond second-stage cubes, our MA8 apparatus has a great potential to expand the current pressure capacity for precise low-temperature measurements with a large sample volume. Edited by: A. Goñi, A. Cantarero, J. S. Reparaz


2005 ◽  
Vol 44 (31) ◽  
pp. 6718 ◽  
Author(s):  
Tonghun Lee ◽  
Wolfgang G. Bessler ◽  
Helmut Kronemayer ◽  
Christof Schulz ◽  
Jay B. Jeffries

Sign in / Sign up

Export Citation Format

Share Document