Morphology and mechanical properties of melt-drawn films of blends of high-density polyethylene and ultrahigh-molecular-weight polyethylene

1993 ◽  
Vol 12 (16) ◽  
pp. 1309-1312 ◽  
Author(s):  
Yong Zhao ◽  
Weiguang Zhang ◽  
Decai Yang
2013 ◽  
Vol 33 (7) ◽  
pp. 599-614 ◽  
Author(s):  
Mazatusziha Ahmad ◽  
Mat Uzir Wahit ◽  
Mohammed Rafiq Abdul Kadir ◽  
Khairul Zaman Mohd Dahlan ◽  
Mohammad Jawaid

Abstract Blends of ultrahigh molecular weight polyethylene (UHMWPE) with high-density polyethylene (HDPE) provide adequate mechanical properties for biomedical application. In this study, the mechanical and thermal properties of UHMWPE/HDPE blends with the addition of polyethylene glycol (PEG) prepared via single-screw extruder nanomixer were investigated. The UHMWPE/HDPE blends exhibit a gradual increase in strength, modulus, and impact strength over pure polymers, suggesting synergism in the polymer blends. The elastic and flexural modulus was increased at the expense of tensile, flexural, and impact strength for the blends containing PEG. The degradation temperature of UHMWPE was improved with the incorporation of HDPE due to good thermal stability of HDPE. HDPE improved the dispersibility of PEG in matrix, consequently reduced the surface area available for the kinetic effects, and reduced the degradation temperature. The morphology analysis confirmed the miscibility between UHMWPE and HDPE and the changes in polymer structure with the presence of PEG modify the thermal behavior of the blends. The mechanical properties of the blends that are underlying values for the design of implant material show the potential used as biomedical devices.


Rekayasa ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 219-224
Author(s):  
Febrianti Nurul Hidayah ◽  
Johan Boss

The use of steel in building or construction manufacture continues to decrease, owing in part to the sustainability and mechanical properties of fibers which have higher strength in minimum weight than steel. This preliminary study was defined to evaluate the mechanical properties of high-performance fibers, especially ultrahigh molecular weight polyethylene (UHMWPE), in terms of the composite to be the main material of windmill turbines. It was UHMWPE as reinforcement and high-density polyethylene (HDPE) as a matrix in this composite system. The composites were processed in a variety of pressure and duration (50 to 165 bar and 10 minutes to 48 hours). The mechanical strength was tested by 3-point bending tests to measure the interlaminar shear strength, shear modulus, and bending strength. The result showed a significant difference in properties of the composite which is higher pressure and longer duration obtained a higher value of mechanical strength.


Sign in / Sign up

Export Citation Format

Share Document