Passive electrical properties and voltage dependent membrane capacitance of single skeletal muscle fibers

1985 ◽  
Vol 403 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Shiro Takashima
1989 ◽  
Vol 93 (3) ◽  
pp. 565-584 ◽  
Author(s):  
C L Huang ◽  
L D Peachey

Components of nonlinear capacitance, or charge movement, were localized in the membranes of frog skeletal muscle fibers by studying the effect of 'detubulation' resulting from sudden withdrawal of glycerol from a glycerol-hypertonic solution in which the muscles had been immersed. Linear capacitance was evaluated from the integral of the transient current elicited by imposed voltage clamp steps near the holding potential using bathing solutions that minimized tubular voltage attenuation. The dependence of linear membrane capacitance on fiber diameter in intact fibers was consistent with surface and tubular capacitances and a term attributable to the capacitance of the fiber end. A reduction in this dependence in detubulated fibers suggested that sudden glycerol withdrawal isolated between 75 and 100% of the transverse tubules from the fiber surface. Glycerol withdrawal in two stages did not cause appreciable detubulation. Such glycerol-treated but not detubulated fibers were used as controls. Detubulation reduced delayed (q gamma) charging currents to an extent not explicable simply in terms of tubular conduction delays. Nonlinear membrane capacitance measured at different voltages was expressed normalized to accessible linear fiber membrane capacitance. In control fibers it was strongly voltage dependent. Both the magnitude and steepness of the function were markedly reduced by adding tetracaine, which removed a component in agreement with earlier reports for q gamma charge. In contrast, detubulated fibers had nonlinear capacitances resembling those of q beta charge, and were not affected by adding tetracaine. These findings are discussed in terms of a preferential localization of tetracaine-sensitive (q gamma) charge in transverse tubule membrane, in contrast to a more even distribution of the tetracaine-resistant (q beta) charge in both transverse tubule and surface membranes. These results suggest that q beta and q gamma are due to different molecules and that the movement of q gamma in the transverse tubule membrane is the voltage-sensing step in excitation-contraction coupling.


1971 ◽  
Vol 78 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Gerald D. Fischbach ◽  
Mark Nameroff ◽  
Phillip G. Nelson

2021 ◽  
Vol 153 (4) ◽  
Author(s):  
Shannon H. Romer ◽  
Sabrina Metzger ◽  
Kristiana Peraza ◽  
Matthew C. Wright ◽  
D. Scott Jobe ◽  
...  

Huntington’s disease (HD) is a fatal and progressive condition with severe debilitating motor defects and muscle weakness. Although classically recognized as a neurodegenerative disorder, there is increasing evidence of cell autonomous toxicity in skeletal muscle. We recently demonstrated that skeletal muscle fibers from the R6/2 model mouse of HD have a decrease in specific membrane capacitance, suggesting a loss of transverse tubule (t-tubule) membrane in R6/2 muscle. A previous report also indicated that Cav1.1 current was reduced in R6/2 skeletal muscle, suggesting defects in excitation–contraction (EC) coupling. Thus, we hypothesized that a loss and/or disruption of the skeletal muscle t-tubule system contributes to changes in EC coupling in R6/2 skeletal muscle. We used live-cell imaging with multiphoton confocal microscopy and transmission electron microscopy to assess the t-tubule architecture in late-stage R6/2 muscle and found no significant differences in the t-tubule system density, regularity, or integrity. However, electron microscopy images revealed that the cross-sectional area of t-tubules at the triad were 25% smaller in R6/2 compared with age-matched control skeletal muscle. Computer simulation revealed that the resulting decrease in the R6/2 t-tubule luminal conductance contributed to, but did not fully explain, the reduced R6/2 membrane capacitance. Analyses of bridging integrator-1 (Bin1), which plays a primary role in t-tubule formation, revealed decreased Bin1 protein levels and aberrant splicing of Bin1 mRNA in R6/2 muscle. Additionally, the distance between the t-tubule and sarcoplasmic reticulum was wider in R6/2 compared with control muscle, which was associated with a decrease in junctophilin 1 and 2 mRNA levels. Altogether, these findings can help explain dysregulated EC coupling and motor impairment in Huntington’s disease.


1989 ◽  
Vol 256 (2) ◽  
pp. C434-C440 ◽  
Author(s):  
P. Stein ◽  
P. Palade

Stretching frog skeletal muscle fibers to the breaking point results in the rapid formation of numerous large spheres of membrane (5-80 microns diam). The surface of the spheres readily forms gigaohm (G omega) seals against patch pipettes, allowing low-noise single-channel recording. Currents recorded from patches isolated from these spheres indicate that they contain a variety of channels including 1) a small Na+-selective channel seen in the presence of veratridine, 2) a K+-selective channel which is blocked by millimolar Mg-ATP, and 3) a relatively large voltage-dependent Cl- channel which is blocked by Zn2+ and limited in selectivity over other anions [PCl/PMOPS = 3.7; MOPS, 3-(N-morpholino)propanesulfonic acid]. These channels have been described previously and have been identified as markers for sarcolemmal (SL) membrane. Accordingly, this method allows rapid and direct recording of channels in the SL membrane without first having to pretreat fibers with proteolytic enzymes to render the SL accessible to patch pipettes.


1978 ◽  
Vol 33 (7-8) ◽  
pp. 561-573 ◽  
Author(s):  
Joachim R. Sommer ◽  
Nancy R. Wallace ◽  
Wilhelm Hasselbach

Abstract When various cations, including Ca2+, are in the fixative, both sarcoplasmic reticulum (SR) of whole skeletal muscle and isolated SR vesicles collapse to form pentalaminate “compound membranes” that result from the apparent fusion of the lumenal lamellae of the membranous envelope of the SR. The process may be reversed by subsequently soaking the tissue in 1 ᴍ NaCl. An identical morphological phenomenon is observed in unfixed quickly frozen isolated frog skeletal muscle fibers, the cation in that case coming from endogenous sources. The hypothesis is advanced that the collapse is an in vivo process mediated by the sequestration of Ca2+ after contraction. The resulting obliteration of the SR lumen would have the effect of displacing the SR contents into the junctional SR, as well as electrically isolating the free SR from the junctional SR during relaxation. As a consequence, resistive coupling between the plasmalemma and the junctional SR becomes a plausible mechanism for the translation of the action potential into Ca2+ release, since the bulk of the SR membrane capacitance would now remain separated from the plasmalemma during relaxation.


Sign in / Sign up

Export Citation Format

Share Document