Muscle cross-sectional area, force production and relaxation characteristics in women at different ages

1991 ◽  
Vol 62 (6) ◽  
pp. 410-414 ◽  
Author(s):  
K. H�kkinen ◽  
A. H�kkinen
1990 ◽  
Vol 69 (3) ◽  
pp. 861-867 ◽  
Author(s):  
S. C. Kandarian ◽  
T. P. White

Hypotheses were tested that the deficit in maximum isometric force normalized to muscle cross-sectional area (i.e., specific Po, N/cm2) of hypertrophied muscle would return to control value with time and that the rate and magnitude of adaptation of specific force would not differ between soleus and plantaris muscles. Ablation operations of the gastrocnemius and plantaris muscles or the gastrocnemius and soleus muscles were done to induce hypertrophy of synergistic muscle left intact in female Wistar rats (n = 47) at 5 wk of age. The hypertrophied soleus and plantaris muscles and control muscles from other age-matched rats (n = 22) were studied from days 30 to 240 thereafter. Po was measured in vitro at 25 degrees C in oxygenated Krebs-Ringer bicarbonate. Compared with control values, soleus muscle cross-sectional area increased 41-15% from days 30 to 240 after ablation, whereas Po increased 11 and 15% only at days 60 and 90. Compared with control values, plantaris muscle cross-sectional area increased 52% at day 30, 40% from days 60 through 120, and 15% at day 240. Plantaris muscle Po increased 25% from days 30 to 120 but at day 240 was not different from control value. Changes in muscle architecture were negligible after ablation in both muscles. Specific Po was depressed from 11 to 28% for both muscles at all times. At no time after the ablation of synergistic muscle did the increased muscle cross-sectional area contribute fully to isometric force production.


1994 ◽  
Vol 76 (2) ◽  
pp. 974-978 ◽  
Author(s):  
J. A. Taylor ◽  
S. C. Kandarian

When maximum isometric force (Po) is normalized to muscle cross-sectional area (CSA), intrinsic differences in force production among muscles may be masked by alterations in myofibrillar protein concentration or extracellular space. We tested the hypothesis that there is a greater deficit in Po when normalized to the average whole muscle CSA than when normalized to the myofibrillar protein CSA under conditions known to alter the concentration of myofibrils or connective tissue protein or interstitial fluid volume. Rats underwent either hindlimb unweighting (HU) to induce atrophy in the soleus muscle, sciatic nerve denervation to induce atrophy in the soleus and extensor digitorum longus (EDL) muscles, or ablation of gastrocnemius and plantaris muscles to induce hypertrophy in the soleus muscle. Po of the soleus muscle normalized to the muscle CSA (specific Po) was 58, 25, and 72% of control muscles with HU, denervation, and hypertrophy, respectively, whereas denervated EDL muscle specific Po was 60% of control muscles (P < 0.05). Soleus muscle Po normalized to the myofibrillar CSA was 80, 53, and 75% of control muscles with HU, denervation, and hypertrophy, respectively, whereas the denervated EDL muscle value was 82% of control muscles (P < 0.05). Both approaches to normalizing Po show force deficits, but normalization to the average myofibrillar protein in the muscle cross section gives values substantially closer to control values for HU and denervated muscles only. Data support the hypothesis because myofibrillar protein concentration is decreased in HU and denervation and interstitial space is increased in HU but neither parameter is altered with hypertrophy.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chong Liu ◽  
Jiang Xue ◽  
Jingjing Liu ◽  
Gang Ma ◽  
Abu Moro ◽  
...  

Abstract Background The purpose of the study is to investigate the correlation between upper lumbar disc herniation (ULDH) and multifidus muscle degeneration via the comparison of width, the cross-sectional area and degree of fatty infiltration of the lumbar multifidus muscle. Methods Using the axial T2-weighted images of magnetic resonance imaging as an assessment tool, we retrospectively investigated 132 patients with ULDH and 132 healthy individuals. The total muscle cross-sectional area (TMCSA) and the pure muscle cross-sectional area (PMCSA) of the multifidus muscle at the L1/2, L2/3, and L3/4 intervertebral disc levels were measured respectively, and in the meantime, the average multifidus muscle width (AMMW) and degree of fatty infiltration of bilateral multifidus muscle were evaluated. The resulting data were analyzed to determine the presence/absence of statistical significance between the study and control groups. Multivariate logistical regression analyses were used to evaluate the correlation between ULDH and multifidus degeneration. Results The results of the analysis of the two groups showed that there were statistically significant differences (p < 0.05) between TMCSA, PMCSA, AMMW and degree of fatty infiltration. The multivariate logistic regression analysis indicated that the TMCSA, PMCSA, AMMW and the degree of fatty infiltration of multifidus muscle were correlated with ULDH, and the differences were statistically significant (P < 0.05). Conclusions A correlation could exist between multifidus muscles degeneration and ULDH, that may be a process of mutual influence and interaction. Lumbar muscle strengthening training could prevent and improve muscle atrophy and degeneration.


2015 ◽  
Vol 116 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Felipe Damas ◽  
Stuart M. Phillips ◽  
Manoel E. Lixandrão ◽  
Felipe C. Vechin ◽  
Cleiton A. Libardi ◽  
...  

2000 ◽  
Vol 88 (3) ◽  
pp. 1127-1132 ◽  
Author(s):  
Brenda Russell ◽  
Delara Motlagh ◽  
William W. Ashley

What determines the shape, size, and force output of cardiac and skeletal muscle? Chicago architect Louis Sullivan (1856–1924), father of the skyscraper, observed that “form follows function.” This is as true for the structural elements of a striated muscle cell as it is for the architectural features of a building. Function is a critical evolutionary determinant, not form. To survive, the animal has evolved muscles with the capacity for dynamic responses to altered functional demand. For example, work against an increased load leads to increased mass and cross-sectional area (hypertrophy), which is directly proportional to an increased potential for force production. Thus a cell has the capacity to alter its shape as well as its volume in response to a need for altered force production. Muscle function relies primarily on an organized assembly of contractile and other sarcomeric proteins. From analysis of homogenized cells and molecular and biochemical assays, we have learned about transcription, translation, and posttranslational processes that underlie protein synthesis but still have done little in addressing the important questions of shape or regional cell growth. Skeletal muscles only grow in length as the bones grow; therefore, most studies of adult hypertrophy really only involve increased cross-sectional area. The heart chamber, however, can extend in both longitudinal and transverse directions, and cardiac cells can grow in length and width. We know little about the regulation of these directional processes that appear as a cell gets larger with hypertrophy or smaller with atrophy. This review gives a brief overview of the regulation of cell shape and the composition and aggregation of contractile proteins into filaments, the sarcomere, and myofibrils. We examine how mechanical activity regulates the turnover and exchange of contraction proteins. Finally, we suggest what kinds of experiments are needed to answer these fundamental questions about the regulation of muscle cell shape.


Sign in / Sign up

Export Citation Format

Share Document