Problem of the quantitative petrological classification in the rock series arkose ? Graywacke ? Quartz sandstone ? Clay shale

1968 ◽  
Vol 19 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Ji?� Konta
Keyword(s):  
2020 ◽  
Vol 224 (3) ◽  
pp. 1523-1539
Author(s):  
Lisa Winhausen ◽  
Alexandra Amann-Hildenbrand ◽  
Reinhard Fink ◽  
Mohammadreza Jalali ◽  
Kavan Khaledi ◽  
...  

SUMMARY A comprehensive characterization of clay shale behavior requires quantifying both geomechanical and hydromechanical characteristics. This paper presents a comparative laboratory study of different methods to determine the water permeability of saturated Opalinus Clay: (i) pore pressure oscillation, (ii) pressure pulse decay and (iii) pore pressure equilibration. Based on a comprehensive data set obtained on one sample under well-defined temperature and isostatic effective stress conditions, we discuss the sensitivity of permeability and storativity on the experimental boundary conditions (oscillation frequency, pore pressure amplitudes and effective stress). The results show that permeability coefficients obtained by all three methods differ less than 15 per cent at a constant effective stress of 24 MPa (kmean = 6.6E-21 to 7.5E-21 m2). The pore pressure transmission technique tends towards lower permeability coefficients, whereas the pulse decay and pressure oscillation techniques result in slightly higher values. The discrepancies are considered minor and experimental times of the techniques are similar in the range of 1–2 d for this sample. We found that permeability coefficients determined by the pore pressure oscillation technique increase with higher frequencies, that is oscillation periods shorter than 2 hr. No dependence is found for the applied pressure amplitudes (5, 10 and 25 per cent of the mean pore pressure). By means of experimental handling and data density, the pore pressure oscillation technique appears to be the most efficient. Data can be recorded continuously over a user-defined period of time and yield information on both, permeability and storativity. Furthermore, effective stress conditions can be held constant during the test and pressure equilibration prior to testing is not necessary. Electron microscopic imaging of ion-beam polished surfaces before and after testing suggests that testing at effective stresses higher than in situ did not lead to pore significant collapse or other irreversible damage in the samples. The study also shows that unloading during the experiment did not result in a permeability increase, which is associated to the persistent closure of microcracks at effective stresses between 24 and 6 MPa.


2021 ◽  
Vol 13 (1) ◽  
pp. 166-187
Author(s):  
Hao Liu ◽  
Chan Wang ◽  
Yong Li ◽  
Jianghong Deng ◽  
Bin Deng ◽  
...  

Abstract The black rock series in the Qiongzhusi Formation contains important geochemical information about the early Cambrian tectonic and ecological environment of the southwestern Yangtze Block. In this paper, major, trace, and rare earth element data are presented in an attempt to reveal the sediment source during the deposition of the early Cambrian Qiongzhusi Formation and to reconstruct the sedimentary tectonic environment and weathering intensity during that time. The basin primarily received continental clastic material with neutral-acidic igneous rocks from a stable source and with a moderate level of maturity during the depositional period of the Qiongzhusi Formation. Furthermore, the strata were weakly influenced by submarine hydrothermal fluids during diagenesis. The reconstruction of the sedimentary environment and weathering intensity shows that P2O5 enrichment and water body stratification occurred due to the effects of upwelling ocean currents during the depositional period of the Qiongzhusi Formation. The combination of upwelling and bottom-water hydrothermal fluids led to environmental changes in the study area, from dry and hot to moist and warm. Last, the reconstruction of the tectonic environment of the Qiongzhusi Formation indicates that deposition occurred in continental slope and marginal marine environments associated with a continental arc tectonic system. These findings provide an essential basis for the comprehensive reconstruction of the early Cambrian sedimentary environment of the Yangtze Block.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 424 ◽  
Author(s):  
Maxwel Joseph Henri Nainggolan ◽  
Wiwik Rahayu ◽  
Puspita Lisdiyanti

In recent years, utilization of biotechnology in geotechnical field has rapidly grown. One of the biotechnologies being utilized is urease enzyme, a stabilization material by bio-cementation method studied in this research.  Urease enzyme is manually mixed with additional 10% of clay soil to clay shale. The objective of mixing it is to increase the bearing capacity of the clay shale. Consolidated undrained triaxial test was performed for testing the soil strength performance for samples that had undergone curing for 2, 4, and 6 weeks. The results indicated that the sample stiffens, proved by the increase of shear strength from consolidated undrained triaxial test. The shear strength value produced by the variation of the urease enzyme mixture + 10% the clay is higher than that of without the original clay shale.  


2016 ◽  
Vol 41 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Anton Trník ◽  
Lenka Scheinherrová ◽  
Tereza Kulovaná ◽  
Pavel Reiterman ◽  
Eva Vejmelková ◽  
...  

2016 ◽  
Author(s):  
Katrin M. Wild ◽  
Patric Walter ◽  
Florian Amann

Abstract. Clay shale specimens were exposed to cyclic relative humidity variations to investigate the response of the material to natural environmental changes. Opalinus Clay, a clay shale chosen as host rock for nuclear waste disposal in Switzerland, was utilized. The specimens were exposed to stepwise relative humidity cycles where they were alternately allowed to equilibrate at 66 and 93 % relative humidity. Principal strains were monitored throughout the experiments using strain gauges. After each relative humidity cycle, Brazilian tensile strength tests were performed to identify possible changes in tensile strength due to environmental degradation. Results showed that Opalinus Clay follows a cyclic swelling-shrinkage behaviour with irreversible expansion limited to the direction normal to bedding, suggesting that internal damage is restricted along the bedding planes. The Brazilian tensile strength in direction parallel and normal to bedding as well as the water retention characteristic remained unaffected by the RH variations.


2017 ◽  
Vol 24 (27) ◽  
pp. 21761-21769 ◽  
Author(s):  
Bin Xie ◽  
Hang Luo ◽  
Qing Tang ◽  
Jun Du ◽  
Zuohua Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document