The common convective envelope model for W Ursae Majoris systems and the analysis of their light curves

1973 ◽  
Vol 22 (2) ◽  
pp. 381-392 ◽  
Author(s):  
L. B. Lucy
1980 ◽  
Vol 88 ◽  
pp. 491-494 ◽  
Author(s):  
Osmi Vilhu ◽  
Timo Rahunen

The structure and evolution of W UMa stars is still unsolved although considerable progress has been achieved in recent years. Most theoretical studies are based on the common convective envelope model by Lucy (1968a,b), which almost satisfactorily explains the nearly equal minima of the light curves. All A-type (Wilson, 1978) and some W-type systems (Whelan et al., 1979) may contain an evolved primary. In this case stable models exist (Hazlehurst, 1970; Moss and Whelan, 1970). Computations performed for the subsequent evolution (Moss, 1971; Hazlehurst and Meyer-Hofmeister, 1973; Rahunen and Vilhu, 1977) show nuclear time scale evolution towards more extreme mass ratio, supplemented by possible thermal time scale oscillations.


1998 ◽  
Vol 11 (1) ◽  
pp. 382-382
Author(s):  
Wonyong Han ◽  
Chun-Hwey Kim ◽  
Jae Woo Lee ◽  
Ho-Il Kim ◽  
Woo-Baik Lee

The BVR CCD observations of W UMa-type eclipsing binary SS Arietis were made for ten nights from November 1996 to December 1996 at the Sobaeksan Astronomy Observatory. From the observed light curves, nine new times of minimum lights were derived from the Kwee and van Woerden’s method. Improved light elements for this system were determined from these minimum lights with all the published minima. The analysis of the times of minima of SS Ari confirms that the orbital period of SS Ari has been suffering from a sinusoidal variation as the suggestions of other previous investigators (Kaluzny & Pojmanski 1984, Demircan & Selam 1993). The calculation shows that the cyclic period change has a period of about 56.3yrs with an amplitude of about 0.d052. The period variation has been discussed in terms of two potential mechanisms: 1) the light-time effect due to a hypothetical third body and 2) deformations in the convective envelope of a magnetically active component. The BVR light curves of SS Ari observed for about one month showed the existence of cycle to cycle light variations. Long-term light changes of SS Ari are discussed in terms of the period variation of the binary system.


1980 ◽  
Vol 88 ◽  
pp. 495-499
Author(s):  
David H. Smith ◽  
Robert Connon Smith ◽  
J. Alistair Robertson

After Lucy (1968) introduced the contact-binary model with a common convective envelope, it was envisaged by Hazlehurst & Meyer-Hofmeister (1973) that a sideways flow of convective elements would carry energy from the more luminous star, the primary, to the less luminous star, the secondary, as a result of horizontal pressure variations. Webbink (1977) extended this picture by noting that the interaction between vertical entropy gradients and large-scale smooth circulation currents in the common envelope would provide the necessary redistribution of flux. That is, energy is absorbed by the flow during its vertical motion in the primary and is released during its vertical motion in the secondary. Webbink (1977) mentioned two mechanisms by which a large-scale circulation could be generated: (1) the non-spherically symmetric force field due to rotation and tides which will drive an analogue of classical Eddington-Sweet circulation and (2) differential heating of the base of the common envelope. Although these mechanisms are conceptually different, they are not in practice easy to disentangle, and will certainly both be operating in contact binaries.


1976 ◽  
Vol 73 ◽  
pp. 333-333
Author(s):  
A. P. Moses ◽  
R. C. Smith

The anomalous mass-luminosity relation for the components of a contact binary system is usually explained by postulating strong energy transfer from the primary to the secondary. It has been assumed that the transfer occurs in the common convective envelope surrounding the two stars, but so far the only attempt at a model for the energy transfer has been the sideways convection model of Hazlehurst and Meyer-Hofmeister (1973), which assumes a large-scale circulation of material between the two components.Any detailed discussion of the dynamics in the common envelope must take account of the predominantly vertical motions associated with normal thermal convection, of Coriolis forces and of viscosity. We have constructed an approximate model for the horizontal transfer of energy between the two components, using a mixing-length approach and taking all three factors into account. The major factors are the vertical convection and the Coriolis forces, which together prevent a large-scale circulation of the type proposed by Hazlehurst and Meyer-Hofmeister. Instead, the flow breaks up into smallscale eddies whose horizontal scale is determined by the interaction of convection, Coriolis forces and viscosity. This has the important qualitative consequence that horizontal energy transfer will occur only if the mean horizontal pressure gradient between the two stars exceeds a certain minimum value. This condition can easily be satisfied in the adiabatic zone of the envelope, but may be an important restriction in the super-adiabatic zone.Using our model, we were able to estimate the entropy difference between components which is required to transfer enough energy to explain the observed mass-luminosity relation. We found that equal entropy models are possible only if the contact is deep. Unequal entropy models are possible for any degree of contact, so long as the contact extends down as far as the adiabatic zone. If, as has been suggested, the depth of contact increases during evolution then zero-age models must have shallow contact and hence unequal entropies. Deep contact equal entropy models would then form as a result of evolution.A difficulty is that in our model insufficient energy transfer can occur in the super-adiabatic zone to produce WUMa light curves for the unequal entropy models. This may mean that further work is needed on the exact surface conditions in these stars.


2011 ◽  
Vol 7 (S282) ◽  
pp. 199-200
Author(s):  
Krisztián Vida ◽  
Katalin Oláh ◽  
Zsolt Kővári

AbstractV405 And is an ultrafast-rotating (Prot ≈ 0.46 days) eclipsing binary. The system consists of a primary star with radiative core and convective envelope, and a fully convective secondary. Theories have shown that stellar structure can depend on magnetic activity, i.e., magnetically active M-dwarfs should have larger radii. Earlier light curve modelling of V405 And indeed showed this behaviour: we found that the radius of the primary is significantly larger than the theoretically predicted value for inactive main sequence stars (the discrepancy is the largest of all known objects), while the secondary fits well to the mass-radius relation. By modelling our recently obtained light curves, which show significant changes of the spotted surface of the primary, we can find further proof for this phenomenon.


1993 ◽  
Vol 134 ◽  
pp. 139-140
Author(s):  
D. Barthés ◽  
Y. Tuchman ◽  
M. O. Mennessier ◽  
J. A. Mattei

Visual observations of long period variable stars over 20 years were provided by the American Association of Variable Stars Observers, and were analysed as part of the preparation of the HIPPARCOS mission.A set of frequencies is extracted from the light curve by using Fourier transform, preliminary Van Cittert deconvolution and comparison of the results obtained through different kinds of spectral windows. The same procedure is applied to the residual obtained after nonlinear fit of the main frequency. After final comparison of both sets, a nonlinear fit of the common frequencies gives the ‘clean’ power spectrum.Different equilibrium stellar model (i) give theoretical linear nonadiabatic pulsation modes (vj) with their growth rates (ηj)i) (Tuchman 1978). The metallicity is taken between 0.005 and 0.02; the mixing length is λ = 1±0.2; the upper bound is r = 0.7. Assuming two peaks of the power spectrum to be the fundamental (vo) and first overtone (v1) modes, one looks for the corresponding models. The best one is selected by checking the other theoretical overtones they give. So are obtained the mass, the luminosity, the effective temperature and the effective radius of each star.


2018 ◽  
Vol 609 ◽  
pp. A106 ◽  
Author(s):  
F. Taddia ◽  
J. Sollerman ◽  
C. Fremling ◽  
E. Karamehmetoglu ◽  
R. M. Quimby ◽  
...  

Aims. We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods. Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results. The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until ~50 d when the main (secondary) peaks occur at −18.5 mag. The early peak occurs at ~20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (Mej = 7.8 M⊙), He-poor star characterized by a double-peaked 56Ni distribution, a total 56Ni mass of 0.59 M⊙, and an explosion energy of 2.2 × 1051 erg. Alternatively, a normal SN Ib/c explosion (M(56Ni) = 0.11 M⊙, EK = 0.2 × 1051 erg, Mej = 1 M⊙) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 1014 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R⊙ is obtained. Conclusions. We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass (~85 M⊙) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward.


1980 ◽  
Vol 88 ◽  
pp. 501-503
Author(s):  
J. A. Eaton ◽  
C. - C. Wu ◽  
S. M. Rucinski

We discuss ultraviolet photometry of the eclipsing binary W Ursae Majoris obtained with the Groningen instruments on the Astronomical Netherlands Satellite (ANS). Fifty measurements of this star's brightness were obtained for each of the bandpasses at 2200, 2500, and 3300 Å. This new data is significantly more precise than Rucinski's OAO-2 photometry, enabling us to draw definitive conclusions about the distribution of brightness on the surface of W UMa. The ultraviolet light curves are generally similar in shape to those for optical passbands; the amplitudes are greater in the UV, while the depths of the primary and secondary eclipses are nearly equal at both 2200 and 2500 Å. We have analyzed the (2200 − 3300) color curve to determine how much the color temperature varies over the common envelope, concluding that any such temperature variations must be small. In terms of the traditional surface-brightness parameters for gravity darkening, temperature excess of the smaller component, and bolometric albedo, we find β = 0.03 ± 0.01, X = ΔT/T = 0.000 ± 0.009, and Abol = 0.4 ± 0.4. Further, we conclude that the star is limb darkened considerably more at 2200 than at 3300 Å.


2002 ◽  
Vol 187 ◽  
pp. 331-336
Author(s):  
L. Li ◽  
Z. Han ◽  
F. Zhang

AbstractA detailed study of the periods and light curves of binaries AK Her, AP Leo, AB And and AM Leo is presented. Based on the study of the O – C curves, we find that the period variation of each system contains several components with different frequencies, and we suggest that the periodical variations in the periods are likely influenced by different mechanisms. Based on the study of the light curve changes, we find that the light curves exhibit two kinds of variations: rapid variations and long-term variations. We investigate the physical mechanisms which may underlie the variations of the period and the light curve of each system and obtain some new conclusions. According to the characteristics of the rapid light variation in these systems, we suggest that the rapid change in the light curve is probably caused by pulsation of the common envelope, and that the mechanism(s) causing the pulsation may be mass transfer through the inner Lagrangian point L1 or its variation. Finally, the evolutionary trends of these systems are discussed, and we suggest that these systems may be progenitors of cataclysmic variables.


Sign in / Sign up

Export Citation Format

Share Document