scholarly journals Low Color Temperature Variations over the Common Envelope of W Ursae Majoris and the Cause of Its W-Type Light Curve

1980 ◽  
Vol 88 ◽  
pp. 501-503
Author(s):  
J. A. Eaton ◽  
C. - C. Wu ◽  
S. M. Rucinski

We discuss ultraviolet photometry of the eclipsing binary W Ursae Majoris obtained with the Groningen instruments on the Astronomical Netherlands Satellite (ANS). Fifty measurements of this star's brightness were obtained for each of the bandpasses at 2200, 2500, and 3300 Å. This new data is significantly more precise than Rucinski's OAO-2 photometry, enabling us to draw definitive conclusions about the distribution of brightness on the surface of W UMa. The ultraviolet light curves are generally similar in shape to those for optical passbands; the amplitudes are greater in the UV, while the depths of the primary and secondary eclipses are nearly equal at both 2200 and 2500 Å. We have analyzed the (2200 − 3300) color curve to determine how much the color temperature varies over the common envelope, concluding that any such temperature variations must be small. In terms of the traditional surface-brightness parameters for gravity darkening, temperature excess of the smaller component, and bolometric albedo, we find β = 0.03 ± 0.01, X = ΔT/T = 0.000 ± 0.009, and Abol = 0.4 ± 0.4. Further, we conclude that the star is limb darkened considerably more at 2200 than at 3300 Å.

2002 ◽  
Vol 187 ◽  
pp. 331-336
Author(s):  
L. Li ◽  
Z. Han ◽  
F. Zhang

AbstractA detailed study of the periods and light curves of binaries AK Her, AP Leo, AB And and AM Leo is presented. Based on the study of the O – C curves, we find that the period variation of each system contains several components with different frequencies, and we suggest that the periodical variations in the periods are likely influenced by different mechanisms. Based on the study of the light curve changes, we find that the light curves exhibit two kinds of variations: rapid variations and long-term variations. We investigate the physical mechanisms which may underlie the variations of the period and the light curve of each system and obtain some new conclusions. According to the characteristics of the rapid light variation in these systems, we suggest that the rapid change in the light curve is probably caused by pulsation of the common envelope, and that the mechanism(s) causing the pulsation may be mass transfer through the inner Lagrangian point L1 or its variation. Finally, the evolutionary trends of these systems are discussed, and we suggest that these systems may be progenitors of cataclysmic variables.


1979 ◽  
Vol 46 ◽  
pp. 385
Author(s):  
M.B.K. Sarma ◽  
K.D. Abhankar

AbstractThe Algol-type eclipsing binary WX Eridani was observed on 21 nights on the 48-inch telescope of the Japal-Rangapur Observatory during 1973-75 in B and V colours. An improved period of P = 0.82327038 days was obtained from the analysis of the times of five primary minima. An absorption feature between phase angles 50-80, 100-130, 230-260 and 280-310 was present in the light curves. The analysis of the light curves indicated the eclipses to be grazing with primary to be transit and secondary, an occultation. Elements derived from the solution of the light curve using Russel-Merrill method are given. From comparison of the fractional radii with Roche lobes, it is concluded that none of the components have filled their respective lobes but the primary star seems to be evolving. The spectral type of the primary component was estimated to be F3 and is found to be pulsating with two periods equal to one-fifth and one-sixth of the orbital period.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


1989 ◽  
Vol 107 ◽  
pp. 355-355
Author(s):  
Burt Nelson ◽  
Walter D. Davis

Observations of U Cephei made by C. M. Huffer, et al, in 1950-51 and in 1959, are presented here to contrast with other observations made by Huffer and others.In many cases, to see a light-curve of an eclipsing binary is to see all light-curves for that particular system. This is certainly not true of U Cephei which, because of its rapid variations, has held the attention of so many for so long.The 1950-51 yellow and blue observations were made at Washburn Observatory, Madison. The data have been transcribed from Huffer’s note books to a floppy disk and are available.


1980 ◽  
Vol 88 ◽  
pp. 237-241
Author(s):  
Yoji Kondo ◽  
George E. McCluskey ◽  
Robert E. Stencel

The eclipsing binary U Cephei has proven to be of great interest in the study of stellar evolution in close binary systems. Batten (1974), Hall and Walter (1974), Rhombs and Fix (1976), Markworth (1977), and Olson (1978), among others, have recently reported on their intensive ground based studies of U Cephei. Kondo, McCluskey and Wu (1978) have investigated the ultraviolet light curves of U Cephei obtained with Astronomical Netherlands Satellite (ANS). Kondo, McCluskey and Stencel (1979) have discussed the International Ultraviolet Explorer (IUE) spectra of U Cephei. This paper discusses results incorporating additional IUE high resolution spectra of U Cephei obtained in both far-ultraviolet and mid-ultraviolet spectral regions.


2011 ◽  
Vol 7 (S282) ◽  
pp. 199-200
Author(s):  
Krisztián Vida ◽  
Katalin Oláh ◽  
Zsolt Kővári

AbstractV405 And is an ultrafast-rotating (Prot ≈ 0.46 days) eclipsing binary. The system consists of a primary star with radiative core and convective envelope, and a fully convective secondary. Theories have shown that stellar structure can depend on magnetic activity, i.e., magnetically active M-dwarfs should have larger radii. Earlier light curve modelling of V405 And indeed showed this behaviour: we found that the radius of the primary is significantly larger than the theoretically predicted value for inactive main sequence stars (the discrepancy is the largest of all known objects), while the secondary fits well to the mass-radius relation. By modelling our recently obtained light curves, which show significant changes of the spotted surface of the primary, we can find further proof for this phenomenon.


2011 ◽  
Vol 7 (S282) ◽  
pp. 55-56
Author(s):  
Alexios Liakos ◽  
Panagiotis Niarchos ◽  
Edwin Budding

AbstractCCD photometric observations of the Algol-type eclipsing binary AT Peg have been obtained. The light curves are analyzed with modern techniques and new geometric and photometric elements are derived. A new orbital period analysis of the system, based on the most reliable timings of minima found in the literature, is presented and apparent period modulations are discussed with respect to the Light-Time effect (LITE) and secular changes in the system. The results of these analyses are compared and interpreted in order to obtain a coherent view of the system's behaviour.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Ronald G. Samec ◽  
Daniel Flaaten ◽  
James Kring ◽  
Danny R. Faulkner

We present the first precision UBVRcIc light curves, an initial period study, and a simultaneous light curve solution for the near-contact solar type eclipsing binary V530 And. Our observations were taken with the 0.81 m Lowell reflector on 27 and 29 September, 2011, with time being granted from the National Undergraduate Research Observatory (NURO). Our Wilson Devinney Program solution yields a semidetached, V1010 Oph configuration: the more massive component is filling its Roche lobe. The system is apparently approaching contact for the first time. It is not a classic Algol.


Sign in / Sign up

Export Citation Format

Share Document