scholarly journals Modelling of an Eclipsing RS CVn Binary: V405 And

2011 ◽  
Vol 7 (S282) ◽  
pp. 199-200
Author(s):  
Krisztián Vida ◽  
Katalin Oláh ◽  
Zsolt Kővári

AbstractV405 And is an ultrafast-rotating (Prot ≈ 0.46 days) eclipsing binary. The system consists of a primary star with radiative core and convective envelope, and a fully convective secondary. Theories have shown that stellar structure can depend on magnetic activity, i.e., magnetically active M-dwarfs should have larger radii. Earlier light curve modelling of V405 And indeed showed this behaviour: we found that the radius of the primary is significantly larger than the theoretically predicted value for inactive main sequence stars (the discrepancy is the largest of all known objects), while the secondary fits well to the mass-radius relation. By modelling our recently obtained light curves, which show significant changes of the spotted surface of the primary, we can find further proof for this phenomenon.

1979 ◽  
Vol 46 ◽  
pp. 385
Author(s):  
M.B.K. Sarma ◽  
K.D. Abhankar

AbstractThe Algol-type eclipsing binary WX Eridani was observed on 21 nights on the 48-inch telescope of the Japal-Rangapur Observatory during 1973-75 in B and V colours. An improved period of P = 0.82327038 days was obtained from the analysis of the times of five primary minima. An absorption feature between phase angles 50-80, 100-130, 230-260 and 280-310 was present in the light curves. The analysis of the light curves indicated the eclipses to be grazing with primary to be transit and secondary, an occultation. Elements derived from the solution of the light curve using Russel-Merrill method are given. From comparison of the fractional radii with Roche lobes, it is concluded that none of the components have filled their respective lobes but the primary star seems to be evolving. The spectral type of the primary component was estimated to be F3 and is found to be pulsating with two periods equal to one-fifth and one-sixth of the orbital period.


2019 ◽  
Vol 628 ◽  
pp. A41 ◽  
Author(s):  
D. Pizzocaro ◽  
B. Stelzer ◽  
E. Poretti ◽  
S. Raetz ◽  
G. Micela ◽  
...  

The relation between magnetic activity and rotation in late-type stars provides fundamental information on stellar dynamos and angular momentum evolution. Rotation-activity studies found in the literature suffer from inhomogeneity in the measurement of activity indexes and rotation periods. We overcome this limitation with a study of the X-ray emitting, late-type main-sequence stars observed by XMM-Newton and Kepler. We measured rotation periods from photometric variability in Kepler light curves. As activity indicators, we adopted the X-ray luminosity, the number frequency of white-light flares, the amplitude of the rotational photometric modulation, and the standard deviation in the Kepler light curves. The search for X-ray flares in the light curves provided by the EXTraS (Exploring the X-ray Transient and variable Sky) FP-7 project allows us to identify simultaneous X-ray and white-light flares. A careful selection of the X-ray sources in the Kepler field yields 102 main-sequence stars with spectral types from A to M. We find rotation periods for 74 X-ray emitting main-sequence stars, 20 of which do not have period reported in the previous literature. In the X-ray activity-rotation relation, we see evidence for the traditional distinction of a saturated and a correlated part, the latter presenting a continuous decrease in activity towards slower rotators. For the optical activity indicators the transition is abrupt and located at a period of ~10 d but it can be probed only marginally with this sample, which is biased towards fast rotators due to the X-ray selection. We observe seven bona-fide X-ray flares with evidence for a white-light counterpart in simultaneous Kepler data. We derive an X-ray flare frequency of ~0.15 d−1, consistent with the optical flare frequency obtained from the much longer Kepler time-series.


2019 ◽  
Vol 489 (4) ◽  
pp. 5513-5529 ◽  
Author(s):  
Kaiming Cui ◽  
Jifeng Liu ◽  
Shuhong Yang ◽  
Qing Gao ◽  
Huiqin Yang ◽  
...  

ABSTRACT Stellar rotation plays a key role in stellar activity. The rotation period could be detected through light curve variations caused by star-spots. Kepler provides two types of light curves: one is the Pre-search Data Conditioning (PDC) light curves, and the other is the Simple Aperture Photometer (SAP) light curves. Compared with the PDC light curves, the SAP light curves keep the long-term trend, relatively suitable for searches of long-period signals. However, SAP data are inflicted by some artefacts such as quarterly rolls and instrumental errors, making it difficult to find the physical periods in the SAP light curves. We explore a systematic approach based on the light curve pre-processing, period detection, and candidate selection. We also develop a simulated light curve test to estimate our detection limits for the SAP-like LCs. After applying our method to the raw SAP light curves, we found more than 1000 main-sequence stars with periods longer than 30 d; 165 are newly discovered. Considering the potential flaw of the SAP, we also inspect the newly found objects with photometry methods, and most of our periodical signals are confirmed.


2008 ◽  
Vol 4 (S258) ◽  
pp. 161-170 ◽  
Author(s):  
Keivan G. Stassun ◽  
Leslie Hebb ◽  
Mercedes López-Morales ◽  
Andrej Prša

AbstractEclipsing binary stars provide highly accurate measurements of the fundamental physical properties of stars. They therefore serve as stringent tests of the predictions of evolutionary models upon which most stellar age determinations are based. Models generally perform very well in predicting coeval ages for eclipsing binaries with main-sequence components more massive than ≈1.2 M⊙; relative ages are good to ~5% or better in this mass regime. Low-mass main-sequence stars (M < 0.8 M⊙) reveal large discrepancies in the model predicted ages, primarily due to magnetic activity in the observed stars that appears to inhibit convection and likely causes the radii to be 10–20% larger than predicted. In mass-radius diagrams these stars thus appear 50–90% older or younger than they really are. Aside from these activity-related effects, low-mass pre–main-sequence stars at ages ~1 Myr can also show non-coevality of ~30% due to star formation effects, however these effects are largely erased after ~10 Myr.


Author(s):  
Jiaxin Wang ◽  
Jianning Fu ◽  
Hubiao Niu ◽  
Yang Pan ◽  
Chunqian Li ◽  
...  

Abstract We study the detached eclipsing binary, KIC 5359678, with starspot modulation using the high-quality Kepler photometry and LAMOST spectroscopy. The PHOEBE model, optimal for this binary, reveals that this system is a circular detached binary, composed of two F-type main-sequence stars. The masses and radii of the primary and the secondary are M1 = 1.31 ± 0.05M⊙, R1 = 1.52 ± 0.04R⊙, M2 = 1.12 ± 0.04M⊙, and R2 = 1.05 ± 0.06R⊙, respectively. The age of this binary is estimated to be about 2Gyr, a value much longer than the synchronization timescale of 17.8 Myr. The residuals of light curves show quasi-sinusoidal signals, which could be induced by starspots. We apply auto-correlation function analysis on the out-of-eclipse residuals and find that the spot with rotational period close to the orbital period, while, the decay timescale of starspots is longer than that on the single stars with the same temperature, period range, and rms scatter. A two-starspot model is adopted to fit the signals with two-dip pattern, whose result shows that the longitude decreases with time.


2012 ◽  
Vol 423 (2) ◽  
pp. 993-1005 ◽  
Author(s):  
J. Jurcsik ◽  
Á. Sódor ◽  
G. Hajdu ◽  
B. Szeidl ◽  
Á. Dózsa ◽  
...  

Abstract The analysis of recent, extended multicolour CCD and archive photoelectric, photographic and visual observations has revealed several important properties of RZ Lyr, an RRab-type variable exhibiting large-amplitude Blazhko modulation. On the time base of ∼110 yr, a strict anticorrelation between the pulsation- and modulation-period changes is established. The light curve of RZ Lyr shows a remarkable bump on the descending branch in the small-amplitude phase of the modulation, similarly to the light curves of bump Cepheids. We speculate that the stellar structure temporally suits a 4:1 resonance between the periods of the fundamental and one of the higher order radial modes in this modulation phase. The light-curve variation of RZ Lyr can be correctly fitted with a two-modulation-component solution; the 121-d period of the main modulation is nearly but not exactly four times longer than the period of the secondary modulation component. Using the inverse photometric method, the variations in the pulsation-averaged values of the physical parameters in different phases of both modulation components are determined.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


2018 ◽  
Vol 620 ◽  
pp. A189 ◽  
Author(s):  
K. Oláh ◽  
S. Rappaport ◽  
T. Borkovits ◽  
T. Jacobs ◽  
D. Latham ◽  
...  

Context. Stars can maintain their observable magnetic activity from the pre-main sequence (PMS) to the tip of the red giant branch. However, the number of known active giants is much lower than active stars on the main sequence (MS) since the stars spend only about 10% of their MS lifetime on the giant branch. Due to their rapid evolution it is difficult to estimate the stellar parameters of giant stars. A possibility for obtaining more reliable stellar parameters for an active giant arises when it is a member of an eclipsing binary system. Aims. We have discovered EPIC 211759736, an active spotted giant star in an eclipsing binary system during the Kepler K2 Campaign 5. The eclipsing nature allows us to much better constrain the stellar parameters than in most cases of active giant stars. Methods. We have combined the K2 data with archival HATNet, ASAS, and DASCH photometry, new spectroscopic radial velocity measurements, and a set of follow-up ground-based BVRCIC photometric observations, to find the binary system parameters as well as robust spot models for the giant at two different epochs. Results. We determined the physical parameters of both stellar components and provide a description of the rotational and long-term activity of the primary component. The temperatures and luminosities of both components were examined in the context of the Hertzsprung–Russell diagram. We find that both the primary and the secondary components deviate from the evolutionary tracks corresponding to their masses in the sense that the stars appear in the diagram at lower masses than their true masses. Conclusions. We further evaluate the proposition that traditional methods generally result in higher masses for active giants than what is indicated by stellar evolution tracks in the HR diagram. A possible reason for this discrepancy could be a strong magnetic field, since we see greater differences in more active stars.


2019 ◽  
Vol 490 (4) ◽  
pp. 5088-5102 ◽  
Author(s):  
M Mugrauer

ABSTRACT A new survey is presented, which explores the second data release of the ESA-Gaia mission, in order to search for stellar companions of exoplanet host stars, located at distances closer than about 500 pc around the Sun. In total, 176 binaries, 27 hierarchical triples, and one hierarchical quadruple system are detected among more than 1300 exoplanet host stars, whose multiplicity is investigated, yielding a multiplicity rate of the exoplanet host stars of at least about 15  per cent. The detected companions and the exoplanet host stars are equidistant and share a common proper motion, as it is expected for gravitationally bound stellar systems, proven with their accurate Gaia astrometry. The companions exhibit masses in the range between about 0.078 and 1.4 M⊙ with a peak in their mass distribution between 0.15 and $0.3\, \mathrm{M}_{\odot }$. The companions are separated from the exoplanet host stars by about 20 up to 9100 au, but are found most frequently within a projected separation of 1000 au. While most of the detected companions are early M dwarfs, eight white dwarf companions of exoplanet host stars are also identified in this survey, whose true nature is revealed with their photometric properties. Hence, these degenerated companions and the exoplanet host stars form evolved stellar systems with exoplanets, which have survived (physically but also dynamically) the post-main-sequence evolution of their former primary star.


1989 ◽  
Vol 107 ◽  
pp. 355-355
Author(s):  
Burt Nelson ◽  
Walter D. Davis

Observations of U Cephei made by C. M. Huffer, et al, in 1950-51 and in 1959, are presented here to contrast with other observations made by Huffer and others.In many cases, to see a light-curve of an eclipsing binary is to see all light-curves for that particular system. This is certainly not true of U Cephei which, because of its rapid variations, has held the attention of so many for so long.The 1950-51 yellow and blue observations were made at Washburn Observatory, Madison. The data have been transcribed from Huffer’s note books to a floppy disk and are available.


Sign in / Sign up

Export Citation Format

Share Document