Measuring the gas temperature in a glow discharge in nitrogen with rapid pumping

1987 ◽  
Vol 47 (5) ◽  
pp. 1111-1114
Author(s):  
V. V. Azharonok ◽  
V. V. Mel'nikov ◽  
D. K. Skutov ◽  
I. I. Filatova ◽  
N. I. Chubrik ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2524 ◽  
Author(s):  
Ezequiel Cejas ◽  
Beatriz Rosa Mancinelli ◽  
Leandro Prevosto

A kinetic scheme for non-equilibrium regimes of atmospheric pressure air discharges is developed. A distinctive feature of this model is that it includes associative ionization with the participation of N(2D, 2P) atoms. The thermal dissociation of vibrationally excited nitrogen molecules and the electronic excitation from all the vibrational levels of the nitrogen molecules are also accounted for. The model is used to simulate the parameters of a glow discharge ignited in a fast longitudinal flow of preheated (T0 = 1800–2900 K) air. The results adequately describe the dependence of the electric field in the glow discharge on the initial gas temperature. For T0 = 1800 K, a substantial acceleration in the ionization kinetics of the discharge is found at current densities larger than 3 A/cm2, mainly due to the N(2P) + O(3P) → NO+ + e process; being the N(2P) atoms produced via quenching of N2(A3∑u+) molecules by N(4S) atoms. Correspondingly, the reduced electric field noticeably falls because the electron energy (6.2 eV) required for the excitation of the N2(A3∑u+) state is considerably lower than the ionization energy (9.27 eV) of the NO molecules. For higher values of T0, the associative ionization N(2D) + O(3P) → NO+ + e process (with a low–activation barrier of 0.38 eV) becomes also important in the production of charged particles. The N(2D) atoms being mainly produced via quenching of N2(A3∑u+) molecules by O(3P) atoms.


1969 ◽  
Vol 22 (2) ◽  
pp. 155 ◽  
Author(s):  
MC Cavenor ◽  
J Meyer

Streak photography has been used to supplement the earlier shutter photo. graphic investigation of Doran and Meyer (1967) using the same coaxial cable discharge circuit. Additional information has also been obtained from measurement of the potential distribution between the electrodes at two stages in the spark development. Redistribution of space charge is shown to give rise firstly to a transient diffuse glow discharge that has a close similarity with a normal d.c. glow discharge. It has also been shown that, even while the diffuse glow discharge expands, a partial constriction occurs in which most of the current flows along a narrow axial column. The resulting maximum in electron density eventually causes a rapid increase in dissociation of molecular hydrogen on the axis of the discharge brought about by a rise in the gas temperature. Owing to its greater electrical conductivity this axial column soon carries the entire current and the discharge becomes filamentary though still being maintained by a high cathode fall field, which exists until a sudden change in the cathode mechanism gives rise to the low voltage arc channel. Both the filamentary glow and arc columns are observed to expand according to an r cc ti law.


2007 ◽  
Vol 102 (12) ◽  
pp. 123302 ◽  
Author(s):  
Vadim P. Stepaniuk ◽  
Tindaro Ioppolo ◽  
M. Volkan Ötügen ◽  
Valery A. Sheverev

2015 ◽  
Vol 38-39 (1) ◽  
pp. 11-22 ◽  
Author(s):  
G. Lj. Majstorović ◽  
N. M. Šišović

Abstract We report the results of optical emission spectroscopy measurements of rotational Trot and translational (gas) temperature of deuterium molecules. The light source was a low-voltage high-pressure hollow cathode (HC) glow discharge with titanium cathode operated in deuterium. The rotational temperature of excited electronic states of D2 was determined from the intensity distribution in the rotational structure of Q-branches of the two Fulcher-α diagonal bands: [ν′ = ν″ = 2] and [ν′ =ν″ = 3]. The population of the excited energy levels, determined from relative line intensities, was used to derive the radial distributions of the temperature of the excited and the ground state of the deuterium molecule.


2006 ◽  
Vol 89 (13) ◽  
pp. 131502 ◽  
Author(s):  
Bratislav M. Obradović ◽  
Milorad M. Kuraica

Sign in / Sign up

Export Citation Format

Share Document