Effect of residual air pressure on the long-time strength of low-carbon steel at elevated temperatures

1972 ◽  
Vol 5 (1) ◽  
pp. 9-12
Author(s):  
N. P. Drozd ◽  
G. G. Maksimovich
2014 ◽  
Vol 1025-1026 ◽  
pp. 504-508 ◽  
Author(s):  
Sang An Ha ◽  
Dong Kyun Kim ◽  
Woo Jin Lee ◽  
Chang Yong Kang ◽  
Kwon Hoo Kim ◽  
...  

Comparison study of oxidation behavior of low carbon steel was conducted at the temperature range of 500°C to 700°C under a 0.2 atm oxygen pressure by continuous and discontinuous oxidation methods. Oxidation rate of both cases was found to be increased with increasing temperature from 500°C to 700°C and obeyed parabolic rate law. In addition, activation energy for the continuous oxidation of steel was found to be a 164.8 kJ/mole, which means that oxidation rate is proportionally dependant on temperature. In case of cyclic oxidation, the oxidation rate was shown to faster than continuous oxidation at all temperatures due to direction oxidation through spallation of the oxide layer.


1978 ◽  
Vol 21 (152) ◽  
pp. 181-188 ◽  
Author(s):  
Norihiko HASEGAWA ◽  
Yozo KATO ◽  
Masaki NAKAJIMA

1996 ◽  
Vol 465 ◽  
Author(s):  
G. A. Henshall

ABSTRACTWrought and cast low-carbon steel are candidate materials for the thick (e.g. 10 cm) outer barrier of nuclear waste packages being considered for use in the potential geological repository at Yucca Mountain. Dry oxidation is one potential degradation mode for these materials at the moderately elevated temperatures expected at the container surface, e.g. 323–533 K (50–260 °C). Therefore, numerical predictions of dry oxidation damage have been made based on experimental data for iron and low-carbon steel and the theory of parabolic oxidation. A numerical approach employing the Forward Euler method has been implemented to integrate the parabolic rate law for arbitrary, complex temperature histories. Assuming growth of a defect-free, adherent oxide, the surface penetration of a low-carbon steel barrier following 5000 years of exposure to a severe, but repository-relevant, temperature history is predicted to be only about 0.127 mm, less than 0.13% of the expected container thickness of 10 cm. Allowing the oxide to spall upon reaching a critical thickness increases the predicted metal penetration values, but degradation is still computed to be negligible. Based on these physically-based model calculations, dry oxidation is not expected to significantly degrade the performance of thick, corrosion allowance barriers constructed of low-carbon steel.


Sign in / Sign up

Export Citation Format

Share Document