Is there a relationship between X-ray photoelectron spectroscopy chemical shifts and Drago'sE andC parameters? Application to the study of acid-base properties of polymers in the solid state

1991 ◽  
Vol 10 (15) ◽  
pp. 908-910 ◽  
Author(s):  
M. M. Chehimi
1998 ◽  
Vol 145 (3) ◽  
pp. 829-834 ◽  
Author(s):  
Sébastien Lopez ◽  
Jean‐Pierre Petit ◽  
Gérard Tourillon ◽  
Hugh M. Dunlop ◽  
Jean‐Rémi Butruille

1995 ◽  
Vol 50 (4-5) ◽  
pp. 381-387 ◽  
Author(s):  
Jürgen Kintrup ◽  
Harald Züchner

Abstract X-ray photoelectron spectroscopy (XPS) has been carried out to study the reaction of differently prepared palladium samples (solid and film Pd) with atmospheric oxygen. A careful curve fitting of the measured Pd-3d5/2 peak allows to separate the Pd-3d5/2 peak for Pd in surface PdO from the dominant Pd-3d5/2 peak of the non-oxidized bulk palladium and to determine the chemical shift of the "oxidized" Pa line with high accuracy. Differences in the chemical shifts for the surface PdO on solid and film palladium are explained by a different charging caused by the photoelectric effect in XPS measurements. The smaller charging effect observed for film palladium as compared to solid palladium indicates a stronger oxygen bonding to the (rougher) film palladium. The strong Pd-O bonding seems to be an essential reason for the reduced hydrogen-permeability of film palladium compared to solid palladium


1994 ◽  
Vol 346 ◽  
Author(s):  
R.J.P. Corriu ◽  
D. Leclercq ◽  
P.H. Mutin ◽  
A. Vioux

ABSTRACTTwo silicon oxycarbide glasses with different compositions (O/Si ratio 1.2 and 1.8) were prepared by pyrolysis at moderate temperature (900 °C) of polysiloxane precursors. Their structure was investigated using quantitative 29Si solid-state NMR and X-ray photoelectron spectroscopy (XPS). The environment of the silicon atoms in the oxycarbide phase corresponded to a purely random distribution of Si-O and Si-C bonds depending on the O/Si ratio of the glass only and not on the structure of the precursors. At the light of the NMR results, the Si2p XPS spectra of the glasses may be interpreted using the contribution of the five possible SiOxC4-x tetrahedra. The Cls spectra of these glasses indicated the presence of oxycarbide carbon in CSi4 tetrahedra, similar to carbide carbon, and graphitic-like excess carbon.


2005 ◽  
Vol 277-279 ◽  
pp. 708-719
Author(s):  
Chang Seop Lee ◽  
Hee Jung Lee ◽  
Sung Woo Choi ◽  
Jahun Kwak ◽  
Charles H.F. Peden

A series of cation exchanged Y-zeolites were prepared by exchanging cations with various alkali (M+, M= Li, Na, K, Cs) metals. The structural and catalytic properties of the alkali metal exchanged Y-zeolites have been investigated by a number of analytical techniques. Comparative elemental analyses were determined by an Energy Dispersive Spectroscopy X-ray (EDS), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and X-ray Fluorescence (XRF) before and after cation substitution. The framework and non-framework Al coordination and the Si/Al ratios of the Y-zeolites were investigated by MAS Solid-State Nuclear Magnetic Resonance (NMR) spectroscopy. The Al NMR spectra were characterized by two 27Al resonance signals at 12 and 59 ppm, indicating the presence of the non-framework and framework Al respectively. The intensities of these resonances were used to monitor the amount of the framework and non-framework Al species in the series of exchanged zeolites. The 29Si NMR spectra were characterized by four resonance signals at -79, -84, -90, and -95 ppm. Changing the alkali metal cations in the exchanged Y-zeolites significantly altered the extent of the octahedral/tetrahedral coordination and the Si/Al ratio. The Fourier Transform Infrared spectra of the CO2 adsorbed on to the exchanged Y-zeolites showed a low frequency shift, as the atomic number of the exchanged alkali metal increased. In addition, the catalytic activity of these samples for NOx reduction were tested in combination with a non-thermal plasma technique and interpreted based on the above structural and spectroscopic information.


Sign in / Sign up

Export Citation Format

Share Document