29Si NMR and XPS Investigation of the Structure of Silicon Oxycarbide Glasses Derived from Polysiloxane Precursors

1994 ◽  
Vol 346 ◽  
Author(s):  
R.J.P. Corriu ◽  
D. Leclercq ◽  
P.H. Mutin ◽  
A. Vioux

ABSTRACTTwo silicon oxycarbide glasses with different compositions (O/Si ratio 1.2 and 1.8) were prepared by pyrolysis at moderate temperature (900 °C) of polysiloxane precursors. Their structure was investigated using quantitative 29Si solid-state NMR and X-ray photoelectron spectroscopy (XPS). The environment of the silicon atoms in the oxycarbide phase corresponded to a purely random distribution of Si-O and Si-C bonds depending on the O/Si ratio of the glass only and not on the structure of the precursors. At the light of the NMR results, the Si2p XPS spectra of the glasses may be interpreted using the contribution of the five possible SiOxC4-x tetrahedra. The Cls spectra of these glasses indicated the presence of oxycarbide carbon in CSi4 tetrahedra, similar to carbide carbon, and graphitic-like excess carbon.

2005 ◽  
Vol 277-279 ◽  
pp. 708-719
Author(s):  
Chang Seop Lee ◽  
Hee Jung Lee ◽  
Sung Woo Choi ◽  
Jahun Kwak ◽  
Charles H.F. Peden

A series of cation exchanged Y-zeolites were prepared by exchanging cations with various alkali (M+, M= Li, Na, K, Cs) metals. The structural and catalytic properties of the alkali metal exchanged Y-zeolites have been investigated by a number of analytical techniques. Comparative elemental analyses were determined by an Energy Dispersive Spectroscopy X-ray (EDS), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and X-ray Fluorescence (XRF) before and after cation substitution. The framework and non-framework Al coordination and the Si/Al ratios of the Y-zeolites were investigated by MAS Solid-State Nuclear Magnetic Resonance (NMR) spectroscopy. The Al NMR spectra were characterized by two 27Al resonance signals at 12 and 59 ppm, indicating the presence of the non-framework and framework Al respectively. The intensities of these resonances were used to monitor the amount of the framework and non-framework Al species in the series of exchanged zeolites. The 29Si NMR spectra were characterized by four resonance signals at -79, -84, -90, and -95 ppm. Changing the alkali metal cations in the exchanged Y-zeolites significantly altered the extent of the octahedral/tetrahedral coordination and the Si/Al ratio. The Fourier Transform Infrared spectra of the CO2 adsorbed on to the exchanged Y-zeolites showed a low frequency shift, as the atomic number of the exchanged alkali metal increased. In addition, the catalytic activity of these samples for NOx reduction were tested in combination with a non-thermal plasma technique and interpreted based on the above structural and spectroscopic information.


2002 ◽  
Vol 306 (3) ◽  
pp. 227-237 ◽  
Author(s):  
Akitoshi Hayashi ◽  
Miyuki Nakai ◽  
Masahiro Tatsumisago ◽  
Tsutomu Minami ◽  
Yusuke Himei ◽  
...  

Clay Minerals ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 201-209 ◽  
Author(s):  
N. He ◽  
T. L. Barr ◽  
J. Klinowski

AbstractThe surface/near-surface chemistry of allophane has been studied by X-ray photoelectron spectroscopy (ESCA) and the bulk material by 27A1 and 29Si solid-state NMR and other techniques. The surface/near-surface Si/Al ratio of allophane is c.1.0, similar to that for kaolinite, zeolite Na-A and sodalite. The core level binding energies for kaolinite and allophane are almost identical, but quite different from those for zeolite Na-A and sodalite, both framework aluminosilicates. The nature and size of these differences is consistent with the differences between the chemistry of sheet and framework silicates. The small variations in the Si(2p) spectra for kaolinite and allophane are discussed in terms of bonding of the tetrahedral units in the two materials.


1988 ◽  
Vol 92 (5) ◽  
pp. 1230-1235 ◽  
Author(s):  
L. R. Le Coustumer ◽  
B. Taouk ◽  
M. Le Meur ◽  
E. Payen ◽  
M. Guelton ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 678 ◽  
Author(s):  
Filip Kunc ◽  
Oltion Kodra ◽  
Andreas Brinkmann ◽  
Gregory P. Lopinski ◽  
Linda J. Johnston

Surface functionalization is a key factor for determining the performance of nanomaterials in a range of applications and their fate when released to the environment. Nevertheless, it is still relatively rare that surface groups or coatings are quantified using methods that have been carefully optimized and validated with a multi-method approach. We have quantified the surface groups on a set of commercial ZnO nanoparticles modified with three different reagents ((3-aminopropyl)-triethoxysilane, caprylsilane and stearic acid). This study used thermogravimetric analysis (TGA) with Fourier transform infrared spectroscopy (FT-IR) of evolved gases and quantitative solution 1H nuclear magnetic resonance (NMR) for quantification purposes with 13C-solid state NMR and X-ray photoelectron spectroscopy to confirm assignments. Unmodified materials from the same suppliers were examined to assess possible impurities and corrections. The results demonstrate that there are significant mass losses from the unmodified samples which are attributed to surface carbonates or residual materials from the synthetic procedure used. The surface modified materials show a characteristic loss of functional group between 300–600 °C as confirmed by analysis of FT-IR spectra and comparison to NMR data obtained after quantitative release/extraction of the functional group from the surface. The agreement between NMR and TGA estimates for surface loading is reasonably good for cases where the functional group accounts for a relatively large fraction of the sample mass (e.g., large groups or high loading). In other cases TGA does not have sufficient sensitivity for quantitative analysis, particularly when contaminants contribute to the TGA mass loss. X-ray photoelectron spectroscopy and solid state NMR for selected samples provide support for the assignment of both the functional groups and some impurities. The level of surface group loading varies significantly with supplier and even for different batches or sizes of nanoparticles from the same supplier. These results highlight the importance of developing reliable methods to detect and quantify surface functional groups and the importance of a multi-method approach.


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Valentina Krylova ◽  
Mindaugas Andrulevičius

Copper sulfide layers were formed on polyamide PA 6 surface using the sorption-diffusion method. Polymer samples were immersed for 4 and 5 h in 0.15 mol⋅  solutions and acidified with HCl (0.1 mol⋅) at . After washing and drying, the samples were treated with Cu(I) salt solution. The samples were studied by UV/VIS, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. All methods confirmed that on the surface of the polyamide film a layer of copper sulfide was formed. The copper sulfide layers are indirect band-gap semiconductors. The values of are 1.25 and 1.3 eV for 4 h and 5 h sulfured PA 6 respectively. Copper XPS spectra analyses showed Cu(I) bonds only in deeper layers of the formed film, while in sulfur XPS S 2p spectra dominating sulfide bonds were found after cleaning the surface with ions. It has been established by the XRD method that, beside , the layer contains as well. For PA 6 initially sulfured 4 h, grain size forchalcocite, , was  nm and fordjurleite, , it was 54.17 nm. The sheet resistance of the obtained layer varies from 6300 to 102 .


2021 ◽  
Vol 11 (13) ◽  
pp. 5767
Author(s):  
Veronica Ciaramitaro ◽  
Alberto Spinella ◽  
Francesco Armetta ◽  
Roberto Scaffaro ◽  
Emmanuel Fortunato Gulino ◽  
...  

Hydrophobic treatment is one of the most important interventions usually carried out for the conservation of stone artefacts and monuments. The study here reported aims to answer a general question about how two polymers confer different protective performance. Two fluorinated-based polymer formulates applied on samples of Cusa’s stone confer a different level of water repellence and water vapour permeability. The observed protection action is here explained on the basis of chemico-physical interactions. The distribution of the polymer in the pore network was investigated using scanning electron microscopy and X-ray microscopy. The interactions between the stone substrate and the protective agents were investigated by means of solid state NMR spectroscopy. The ss-NMR findings reveal no significant changes in the chemical neighbourhood of the observed nuclei of each protective agent when applied onto the stone surface and provide information on the changes in the organization and dynamics of the studied systems, as well as on the mobility of polymer chains. This allowed us to explain the different macroscopic behaviours provided by each protective agent to the stone substrate.


Sign in / Sign up

Export Citation Format

Share Document