Dependence of room temperature fracture strength on strain-rate in sapphire

1973 ◽  
Vol 8 (11) ◽  
pp. 1595-1602 ◽  
Author(s):  
J. T. A. Pollock ◽  
G. F. Hurley
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Zhenxiang ZHAO ◽  
Chunyan LI ◽  
Fuping ZHU ◽  
Xinling LI ◽  
Shengzhong KOU

In this paper, the effects of different strain rate(1×10-5 s-1, 5×10-5 s-1, 1×10-4 s-1, 5×10-4 s-1, 1×10-3 s-1) and aspect ratio(1:1, 1.5:1, 2:1, 2.5:1, 3:1) on mechanical properties of Zr-based metallic glasses at room temperature were investigated. The results indicate that as the strain rate increases, the plastic strain and compressive strength of the specimens gradually decrease. The specimen with the strain rate of 1×10-5 s-1 exhibits the higher plastic strain of 10.25 %, compressive strength of 2002 MPa and fracture strength of 1999 MPa. In addition, accompanied with the increase in aspect ratio, the plastic strain of the specimens declines from 25.42 % to 1.97 %, meanwhile, the compressive strength and fracture strength of the specimens also present declining trend.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744014
Author(s):  
M. Li ◽  
Q. W. Jiang

Tensile deformation behavior of ultrafine-grained (UFG) copper processed by accumulative roll-bonding (ARB) was studied under different strain rates at room temperature. It was found that the UFG copper under the strain rate of 10[Formula: see text] s[Formula: see text] led to a higher strength (higher flow stress level), flow stability (higher stress hardening rate) and fracture elongation. In the fracture surface of the sample appeared a large number of cleavage steps under the strain rate of 10[Formula: see text] s[Formula: see text], indicating a typical brittle fracture mode. When the strain rate is 10[Formula: see text] or 10[Formula: see text] s[Formula: see text], a great amount of dimples with few cleavage steps were observed, showing a transition from brittle to plastic deformation with increasing strain rate.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


2018 ◽  
Vol 59 (4) ◽  
pp. 518-527 ◽  
Author(s):  
Shunichi Nakayama ◽  
Nobuaki Sekido ◽  
Sojiro Uemura ◽  
Sadahiro Tsurekawa ◽  
Kyosuke Yoshimi

1991 ◽  
Vol 27 (3) ◽  
pp. 167-173 ◽  
Author(s):  
P. Nagpal ◽  
I. Baker

Sign in / Sign up

Export Citation Format

Share Document