Load-carrying capacity of circular cylindrical shells in cyclic loading with internal pressure

1990 ◽  
Vol 22 (1) ◽  
pp. 20-24
Author(s):  
V. N. Bastun ◽  
L. M. Shkaraputa
2020 ◽  
Vol 2020 (21) ◽  
pp. 146-153
Author(s):  
Anatolii Dekhtyar ◽  
◽  
Oleksandr Babkov ◽  

Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 590-601
Author(s):  
Hamed Rahman Shokrgozar ◽  
Vahid Akrami ◽  
Tayebeh Jafari Ma'af ◽  
Naseraldin Shahbazi

Author(s):  
Jin Weon Kim ◽  
Chi Yong Park

The pipe failure tests were performed using 102mm-Sch.80 carbon steel pipe with various simulated local wall thinning defects, in the present study, to investigate the failure behavior of pipe thinned by flow accelerated corrosion (FAC). The failure mode, load carrying capacity, and deformation ability were analyzed from the results of experiments conducted under loading conditions of 4-point bending and internal pressure. A failure mode of pipe with a defect depended on the magnitude of internal pressure and axial thinning length as well as stress type and thinning depth and circumferential angle. Also, the results indicated that the load carrying capacity and deformation ability were depended on stress state in the thinning region and dimensions of thinning defect. With increase in axial length of thinning area, for applying tensile stress to the thinning region, the dependence of load carrying capacity was determined by circumferential thinning angle, and the deformation ability was proportionally increased regardless of the circumferential angle. For applying compressive stress to thinning region, however, the load carrying capacity was decreased with increase in axial length of the thinned area. Also, the effect of internal pressure on failure behavior was characterized by failure mode of thinned pipe, and it promoted crack occurrence and mitigated a local buckling of the thinned area.


Author(s):  
Xian-Kui Zhu

Strain-based design is a newer technology used in safety design and integrity management of oil and gas pipelines. In a traditional stress-based design, the axial stress is relatively small compared to the hoop stress generated by internal pressure in a line pipe, and the limit state in the pipeline is usually load-controlled. In a strain-based design, however, axial strain can be large and the load-carrying capacity of pipelines could be reduced significantly below an allowed operating pressure, where the limit state is controlled by an axial strain. In this case, the limit load analysis is of great importance. The present paper confirms that the stress, strain and load-carrying capacity of a thin-walled cylindrical pressure vessel with an axial force are equivalent those of a long pressurized pipeline with an axial tensile strain. Elastic stresses and strains in a pressure vessel are then investigated, and the limit stress, limit strain and limit pressure are obtained in terms of the classical Tresca criterion, von Mises criteria, and a newly proposed average shear stress yield criterion. The results of limit load solutions are analyzed and validated using typical experimental data at plastic yield.


1968 ◽  
Vol 35 (4) ◽  
pp. 754-762 ◽  
Author(s):  
C. L. Dym ◽  
N. J. Hoff

A study is presented of the effect of initial deviations on the load carrying capacity of thin circular cylindrical shells under uniform axial compression. A perturbation expansion is used to reduce the nonlinear equations of von Karman and Donnell to an infinite set of linear equations, of which only the first few need be solved to obtain a reasonably accurate solution. The results for both infinite shells and shells of finite length indicate that a small imperfection can sharply reduce the maximum load that a thin-walled cylinder will sustain. In addition, for a particular set of boundary conditions, it is shown that the effect of the length of a finite shell is small as far as the load carrying capacity is concerned, but significant when the number of waves around the circumference has to be determined. A further result of the study is that axisymmetric initial deviations reduce the load carrying capacity only slightly more than deviations characterized by a product of trigonometric functions of the axial and circumferential coordinates if the wave lengths are properly chosen.


1981 ◽  
Vol 13 (9) ◽  
pp. 1125-1129
Author(s):  
D. E. Lipovskii ◽  
V. A. Nazarov ◽  
V. V. Sutulov ◽  
V. I. Shapko

Sign in / Sign up

Export Citation Format

Share Document