A device for the automatic lubrication of thrust bearings

Metallurgist ◽  
1962 ◽  
Vol 6 (6) ◽  
pp. 285-285
Author(s):  
A. F. Krisanov
Wear ◽  
2016 ◽  
Vol 346-347 ◽  
pp. 108-115 ◽  
Author(s):  
Lu Yushan ◽  
Liu Yueming ◽  
Wang Jun ◽  
Liu Hongpeng

Author(s):  
JC Atwal ◽  
RK Pandey

Performance parameters such as power loss, minimum film thickness, and maximum oil temperature of the sector-shaped tilting pad thrust bearings employing the new micro-structural geometries on pad surfaces have been investigated. The lubrication equation incorporating the mass-conservation issue is discretized using the finite element method and the solution of resulting algebraic equations is obtained employing a Newton-Schur method. The pad equilibrium in the analysis is established using the Newton-Raphson and Braydon methods. The influence of attributes of micro-structures such as depth, circumferential and radial positioning extents have been explored on the performance behaviours. It is found that with the new micro-structured pad surfaces, the performance parameters significantly improved in comparison to conventional plain and conventional rectangular pocketed pads.


Wear ◽  
2021 ◽  
Vol 480-481 ◽  
pp. 203925
Author(s):  
Martin Linzmayer ◽  
Christopher Sous ◽  
Francisco Gutiérrez Guzmán ◽  
Georg Jacobs

Author(s):  
Tae Ho Kim ◽  
Moon Sung Park ◽  
Jongsung Lee ◽  
Young Min Kim ◽  
Kyoung-Ku Ha ◽  
...  

Gas foil bearings (GFBs) have clear advantages over oil-lubricated and rolling element bearings, by virtue of low power loss, oil-free operation in compact units, and rotordynamic stability at high speeds. However, because of the inherent low gas viscosity, GFBs have lower load capacity than the other bearings. In particular, accurate measurement of load capacity and dynamic characteristics of gas foil thrust bearings (GFTBs) is utmost important to widening their applications to high performance turbomachinery. In this study, a series of excitation tests were performed on a small oil-free turbomachinery with base excitations in the rotor axial direction to measure the dynamic load characteristics of a pair of six-pad, bump-type GFTBs, which support the thrust collar. An electromagnetic shaker provided dynamic sine sweep loads to the test bench (shaking table), which held rigidly the turbomachinery test rig for increasing excitation frequency from 10 Hz to 200 Hz. The magnitude of the shaker dynamic load, represented as an acceleration measured on the test rig, was increased up to 9 G (gravity). An eddy current sensor installed on the test rig housing measured the axial displacement (or vibrational amplitude) of the rotor thrust collar during the excitation tests. The axial acceleration of the rotor relative to the test rig was calculated using the measured displacement. A single degree-of-freedom base excitation model identified the frequency-dependent dynamic load capacity, stiffness, damping, and loss factor of the test GFTB for increasing shaker dynamic loads and increasing bearing clearances. The test results show that, for a constant shaker force and the test GFTB with a clearance of 155 μm, an increasing excitation frequency increases the dynamic load carried by the test GFTB, i.e., bearing reaction force, until a certain value of the frequency where it jumps down suddenly because of the influence from Duffing’s vibrations of the rotor. The bearing stiffness increases and the damping decreases dramatically as the excitation frequency increases. Generally, the bearing loss factor ranges from 0.5 to 1.5 independent of the frequency. As the shaker force increases, the bearing dynamic load, stiffness, damping, and loss factor increase depending on the excitation frequency. Interestingly, the agreements between the measured GFTB dynamic load versus the thrust runner displacement, the measured GFTB static load versus the structural deflection, and the predicted static load versus the thrust runner displacement are remarkable. Further tests with increasing GFTB clearances of 155, 180, 205, and 225 μm revealed that the vibrational amplitude increases and the jump-down frequency decreases with increasing clearances. The bearing load increases, but the bearing stiffness, damping, and loss factor decrease slightly as the clearance increases. The test results after a modification of the GFTB by rotating one side bearing plate by 30° relative to the other side bearing plate revealed insignificant changes in the dynamic characteristics. The present dynamic performance measurements provide a useful database of GFTBs for use in microturbomachinery.


2006 ◽  
Vol 13 (8-10) ◽  
pp. 1123-1130 ◽  
Author(s):  
Shigeka Yoshimoto ◽  
Masaaki Miyatake ◽  
Tomoatsu Iwasa ◽  
Akiyoshi Takahashi

2016 ◽  
Vol 703 ◽  
pp. 172-177 ◽  
Author(s):  
Xiao Chen Shi ◽  
Masaya Orito ◽  
Yuji Kashima ◽  
Koshiro Mizobe ◽  
Katsuyuki Kida

Considering the advantages on light weight, low friction coefficient, high corrosion resistance and electric insulation, polymer bearings are widely used under certain environments, where the toughness like metal bearings is not necessary. In our previous study, it was concluded that the main reason for PEEK thrust bearings failure in water was flaking due to surface crack propagation. In the present study, crack observations were made on groove surfaces and cross sections along both radial and rolling directions in order to find the relation between cracks and flaking failures.


Sign in / Sign up

Export Citation Format

Share Document