Initiation of somatic embryogenesis in white spruce (Picea glauca): genetic control, culture treatment effects, and implications for tree breeding

1993 ◽  
Vol 86 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Y. S. Park ◽  
S. E. Pond ◽  
J. M. Bonga
Heredity ◽  
2018 ◽  
Vol 121 (2) ◽  
pp. 142-154 ◽  
Author(s):  
Claudia Méndez-Espinoza ◽  
Geneviève J. Parent ◽  
Patrick Lenz ◽  
André Rainville ◽  
Laurence Tremblay ◽  
...  

2011 ◽  
Vol 5 (S7) ◽  
Author(s):  
Krystyna Klimaszewska ◽  
Brian Boyle ◽  
Sebastien Caron ◽  
Don Stewart ◽  
Catherine Overton ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Cui ◽  
Jian Zhao ◽  
Ying Gao ◽  
Ruirui Zhao ◽  
Jinfeng Zhang ◽  
...  

Conifers are the world's major source of timber and pulpwood and have great economic and ecological value. Currently, little research on the application of CRISPR/Cas9, the commonly used genome-editing tool in angiosperms, has been reported in coniferous species. An efficient CRISPR/Cas9 system based on somatic embryogenesis (SEis) suitable for conifers could benefit both fundamental and applied research in these species. In this study, the SpCas9 gene was optimized based on codon bias in white spruce, and a spruce U6 promoter was cloned and function-validated for use in a conifer specific CRISPR/Cas9 toolbox, i.e., PgCas9/PaU6. With this toolbox, a genome-editing vector was constructed to target the DXS1 gene of white spruce. By Agrobacterium-mediated transformation, the genome-editing vector was then transferred into embryogenic tissue of white spruce. Three resistant embryogenic tissues were obtained and used for regenerating plants via SEis. Albino somatic embryo (SE) plants with mutations in DXS1 were obtained in all of the three events, and the ratios of the homozygous and biallelic mutants in the 18 albino mutants detected were 22.2% in both cases. Green plants with mutations in DXS1 were also produced, and the ratios of the DXS1 mutants to the total green plants were 7.9, 28, and 13.5%, respectively, among the three events. Since 22.7% of the total 44 mutants were edited at both of the target sites 1 and 2, the CRISPR/Cas9 toolbox in this research could be used for multi-sites genome editing. More than 2,000 SE plants were regenerated in vitro after genome editing, and part of them showed differences in plant development. Both chimerism and mosaicism were found in the SE plants of white spruce after genome editing with the CRISPR/Cas9 toolbox. The conifer-specific CRISPR/Cas9 system developed in this research could be valuable in gene function research and trait improvement.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Vincent Chamberland ◽  
François Robichaud ◽  
Martin Perron ◽  
Nancy Gélinas ◽  
Jean Bousquet ◽  
...  

AbstractIntensive plantation forestry is a potent strategy for forest managers to increase wood production on a smaller forest land acreage, especially with the use of genetically improved reforestation stock. The main drawback with conventional conifer improvement is the several decades it takes before stock deployment, which is particularly acute in the context of climate change and evolving wood markets. Use of genomic selection allows to drastically shorten breeding cycles, resulting in more flexibility and potentially increasing benefits. This study compares the financial performance of five white spruce (Picea glauca) breeding and deployment scenarios, from conventional breeding to genomic selection in conjunction with top-grafting or the use of somatic embryogenesis, in the context of plantations established by the Quebec government on public lands with banned herbicide use. We estimated the land expectation value (LEV) for the five scenarios applied to eight site productivity indices, and considered costs and revenues from breeding, plantation establishment, silviculture, and harvest. LEVs at 4% discount rate were positive for all scenarios on all site indices, and varied from $197 to $2015 ha−1 assuming mechanical brushing of the plantations. The scenarios integrating genomic selection resulted in the highest LEVs, which increased with site index. We also conducted sensitivity analyses with 3% and 5% discount rates, with a range of costs and benefits, and with herbicide control of competing vegetation. These results should help orientate public investment decisions regarding the integration of genomic selection at the operational level in tree breeding and reforestation programs on public lands.


Sign in / Sign up

Export Citation Format

Share Document