Experimental study of the dynamic stability of spherical shells with axial reinforcement when subjected to an external pressure pulse

1993 ◽  
Vol 29 (1) ◽  
pp. 42-47
Author(s):  
A. I. Telalov ◽  
V. I. Agulov
2009 ◽  
Vol 31 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Dao Huy Bich

In the present paper the non-linear buckling analysis of functionally graded spherical shells subjected to external pressure is investigated. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. In the formulation of governing equations geometric non-linearity in all strain-displacement relations of the shell is considered. Using Bubnov-Galerkin's method to solve the problem an approximated analytical expression of non-linear buckling loads of functionally graded spherical shells is obtained, that allows easily to investigate stability behaviors of the shell.


2017 ◽  
Vol 60 (4) ◽  
pp. 508-513 ◽  
Author(s):  
V. N. Bakulin ◽  
E. N. Volkov ◽  
A. I. Simonov

1989 ◽  
Vol 33 (04) ◽  
pp. 318-325
Author(s):  
Dario Boote ◽  
Donatella Mascia

Submersible structures consist merely of simple and double curvature thin-walled shells. For this kind of structure, collapse occurs due to the combined nonlinear action of buckling and plasticity of material. Load-carrying capacity may then be assessed mainly by two approaches: experimental investigations and step-by-step numerical procedures. In nonlinear analyses, the results obtained are influenced by the magnitude of the load increment adopted. Solution procedures are then required in order to choose adequate parameters for material failure description as well as elastic nonlinearity. The aim of this paper is to carry out a suitable numerical procedure whose reliability does not depend on the finite-element code adopted.


Sign in / Sign up

Export Citation Format

Share Document