On the motion of a two-component stratified gas-liquid flow in a horizontal pipe

1973 ◽  
Vol 9 (8) ◽  
pp. 892-895 ◽  
Author(s):  
A. Sh. Asaturyan ◽  
Ch. S. Guseinov ◽  
L. K. Kostyuk ◽  
O. V. Chechenkina
Author(s):  
S. Al-Lababidi ◽  
M. L. Sanderson

A method was developed for the measurement of slug frequency, slug velocity and slug length of two-phase gas/liquid flow under slug conditions in 2-inch horizontal pipe. The method consists of two pairs of ultrasonic transducers with 1MHz frequency. Non-invasive detection for slugs was achieved over a range of (0.1–1 ms−1) superficial liquid velocity and (0.1–3 ms−1) superficial gas velocity. The slug translational velocity was measured using a cross correlation technique for the modulated ultrasonic signals received. The slug length was measured after measuring the slug time t(slug) and slug translational velocity. The slug parameters measured were extensively compared with conductivity probes measurements and experimental correlations.


Author(s):  
Shuai Liu ◽  
Li Liu ◽  
Jiarong Zhang ◽  
Hanyang Gu

Abstract Swirling flow is one of the well-recognized techniques to control the working process. This special flow is widely adopted in swirl vane separators in nuclear steam generator (SG) for water droplet separation and the fission gas removal system in Thorium Molten Salt Reactor (TMSR) for gas bubble separation. Since the parameters such as separation efficiency, pressure drop and mass and heat transfer rate are strongly dependent on the flow pattern, the accurate prediction of flow patterns and their transitions is extremely important for the proper design, operation and optimization of swirling two-phase flow systems. In this paper, using air and water as working fluids, a visualization experiment is carried out to study the gas-liquid flow in a horizontal pipe containing a swirler with four helical vanes. The test pipe is 5 m in length and 30 mm in diameter. Firstly, five typical flow patterns of swirling gas-liquid flow at the outlet of the swirler are classified and defined, these being spiral chain, swirling gas column, swirling intermittent, swirling annular and swirling ribbon flow. Being affected by the different gas and liquid flow rate of non-swirling flow, it is found that the same non-swirling flow can change into different swirling flow patterns. After that, the evolution of various swirling flow patterns along the streamwise direction is analyzed considering the influence of swirl attenuation. The results indicate that the same swirling flow pattern can transform into a variety of swirling flow patterns and subsequent non-swirling flow patterns. Finally, the flow pattern maps at different positions downstream of the swirler are presented.


2021 ◽  
Author(s):  
Shuai Liu ◽  
Li Liu ◽  
Jiarong Zhang ◽  
Hanyang Gu

Author(s):  
R. J. Wilkens ◽  
S. R. Glassmeyer ◽  
G. J. Rosebrock ◽  
K. M. Storage ◽  
T. M. Storage

A set of experiments was performed to study flow pattern suppression in gas-liquid pipe flow by means of surfactant additive. Results suggest that addition of the surfactant to gas-liquid flow significantly reduces the occurrence of slug flow. In addition, previously unreported flow patterns were observed to exist between slug and dispersed bubble flows. It is concluded that new mechanisms for slug flow transition need to be considered.


2014 ◽  
Vol 61 ◽  
pp. 129-143 ◽  
Author(s):  
A.A. Ayati ◽  
J. Kolaas ◽  
A. Jensen ◽  
G.W. Johnson

Author(s):  
Robert Bowden ◽  
Wael F. Saleh ◽  
Ibrahim Hassan

Experiments were performed in a 50.8 mm diameter horizontal pipe with co-current stratified gas-liquid flow. A single, 6.35 mm diameter, downward oriented discharge was located at 1829 mm from the horizontal pipe’s inlet. Water and air, operating at a pressure of 312 kPa and adiabatic conditions, were used. The objectives of the study were to investigate gas entrainment in the discharge branch. Qualitative flow visualization of the two-phase entrainment flow structure was conducted, and measurements of the critical liquid height, two-phase mass flow rate, and quality, are provided. The results were compared with available correlations and showed good agreement with selected models.


2018 ◽  
Vol 1128 ◽  
pp. 012128
Author(s):  
S V Mirnov ◽  
A T Komov ◽  
A N Varava ◽  
I E Lyublinski ◽  
A V Dedov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document