Stress state of an elastic medium next to an ellipsoidal cavity with a polynomial stress field at infinity

1981 ◽  
Vol 17 (10) ◽  
pp. 882-890
Author(s):  
Yu. N. Podil'chuk ◽  
V. S. Kirilyuk
2021 ◽  
Vol 1889 (4) ◽  
pp. 042050
Author(s):  
A N Maksimov ◽  
E A Derevyannykh ◽  
T V Mitrofanova ◽  
N N Belova ◽  
Y V Konstantinov

2014 ◽  
Vol 611 ◽  
pp. 405-411 ◽  
Author(s):  
Oskar Ostertag ◽  
Eva Ostertagová ◽  
Peter Frankovský

The presented article is dedicated to stress state development while assessing the concentration of stresses in samples with continuously changing notches. These samples represent connecting elements of structural parts. The stress states of selected samples were determined experimentally by means of reflection photoelasticity. This method is suitable mainly for determination of stress state in the whole area in question, predominantly though for the analysis of stress concentration and its gradient in the notched area. Within the method of reflection photoelasticity, a layer was used to analyse the stress field. When loaded, this layer exhibits the ability of temporal birefringence. One of the statistical methods was selected in order to predict the stress state of other samples with bigger notches.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zeqi Zhu ◽  
Qian Sheng ◽  
Yumin Zhang ◽  
Shiwei Liu

The stress state and principal stress axis changes of the stress-field tensor are analyzed during the advancement of a tunnel face on the basis of a given case study of the Jinping II Hydropower Station in China. First, the prevailing pole diagram in geology is used to illustrate the rotation of the stress axes as the tunnel face advances. The results show that the orientation adjustments of principal stresses in different positions near the tunnel boundary share common characteristics. The major and minor principal stress axes ahead of the tunnel face will rotate to intersect with the excavation surface at an angle, with the intermediate principal stress axis being almost parallel to the excavation surface. Furthermore, the stress triaxiality that is commonly used to indicate the deformation and damage of metal materials is introduced to describe the stress state change of the excavation-induced stress. The stress triaxiality is found to represent the stress state change due to the variation in both the magnitude and orientation of the stress-field tensor. According to the physical meaning and the change law of the stress triaxiality, stress disturbance during tunnel excavation can be divided into four stages, and the stress disturbance zone is divided into a strong disturbance zone and a weak disturbance zone. The disturbance characteristics of different stages and the distribution patterns of various zones are analyzed, which may be useful for practical application in the design and construction of rock tunnels.


1967 ◽  
Vol 34 (1) ◽  
pp. 100-103 ◽  
Author(s):  
A. Jahanshahi

The exact solution to the problem of diffraction of plane harmonic polarized shear waves by a half-plane crack extending under antiplane strain is constructed. The solution is employed to study the nature of the stress field associated with an extending crack in an elastic medium excited by stress waves.


2013 ◽  
Vol 765-767 ◽  
pp. 300-306
Author(s):  
Hui Zhang ◽  
Fang Jun Ou ◽  
Guo Qing Yin ◽  
Jing Bing Yi ◽  
Fang Yuan ◽  
...  

From the perspective of improving single well production and wellbore stability, stress field and natural fractures are the factors which have to be taken into account in the development of horizontal wells of the complex carbonate oil and gas fields in Kuqa piedmont and platform-basin transitional area. On the one hand, as the present stress field is the key factor to control fracture permeability, the trajectory of horizontal wells should pass through fracture system with good permeability as much as possible, being conducive to the effective stimulation of the reservoir. On the other hand, at the state of specific stress, the stability of well trajectory varies with directions. Therefore, before drilling horizontal wells, it is necessary to fully analyze the quantitative relationship between the present stress state and natural fracture occurrence and mechanical characteristics, etc., to optimize and determine a well trajectory conducive to high yield and wellbore stability. In this study, firstly, the fundamental principles for evaluating the present stress state and analyzing the relationship between the stress and fractures were described. Then based on the relationship between them, the occurrence and longitudinal positions of permeability fractures were analyzed. Apart from that, the stability index and fracture opening pressure distribution of wells in different directions at given stress state and fracture system were also analyzed. Finally, the optimization scheme for trajectory of horizontal wells under complex conditions was discussed with three aspects taken into account, i.e. best drilling in permeability fractures, wellbore stability and drilled reservoir stimulation.


10.4095/8551 ◽  
1969 ◽  
Author(s):  
L M Balakina ◽  
L A Misharina ◽  
E I Shirokova ◽  
A V Vvedenskaya

Sign in / Sign up

Export Citation Format

Share Document