Determination of the electron momentum distribution of matter by the positron-annihilation method

1974 ◽  
Vol 17 (8) ◽  
pp. 1141-1145
Author(s):  
K. P. Aref'ev ◽  
S. A. Vorob'ev ◽  
G. I. Etin

1983 ◽  
Vol 45 (9) ◽  
pp. 799-801 ◽  
Author(s):  
A.A Manuel ◽  
R Sachot ◽  
P Descouts ◽  
M Peter ◽  
R.M Singru ◽  
...  








2005 ◽  
Vol 412 (4-6) ◽  
pp. 327-330 ◽  
Author(s):  
Krishnan Sivaji ◽  
Arjunan Arulchakkaravarthi ◽  
Sellaiyan Selvakumar ◽  
Perumalsamy Ramasamy ◽  
Sambasivam Sankar ◽  
...  


1987 ◽  
Vol 48 (8) ◽  
pp. 701-705 ◽  
Author(s):  
Ikuzo Kanazawa ◽  
Shoichiro Tanigawa ◽  
Ryoichi Suzuki ◽  
Yoji Mizuhara ◽  
Mizuka Sano ◽  
...  


1978 ◽  
Vol 21 (7) ◽  
pp. 973-975
Author(s):  
K. P. Aref'ev ◽  
S. A. Vorob'ev ◽  
E. P. Prokop'ev ◽  
G. I. �tin


2008 ◽  
Vol 607 ◽  
pp. 137-139
Author(s):  
C.X. Peng ◽  
Hui Min Weng ◽  
K.F. Wang ◽  
F.L. Guo ◽  
B.J. Ye ◽  
...  

Positron annihilation spectroscopy was employed to study the native point defects in ZnO single crystal, in combination with calculated results of positron lifetime and electron momentum distribution. The theoretical and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600oC annealing treatment. Oxygen vacancies have been characterized by coincidence Doppler broadening (CDB) spectroscopy, combined with calculated electron momentum distribution. CDB spectroscopies show that oxygen vacancies don't appear until 600oC annealing treatment, and increase due to ZnO decomposition with annealing temperature rising.



Sign in / Sign up

Export Citation Format

Share Document