Purification and characterization of the high molecular weight microtubule associated proteins from neonatal rat brain

1994 ◽  
Vol 131 (2) ◽  
pp. 105-113 ◽  
Author(s):  
Leda Guzman ◽  
Rodrigo Bustos ◽  
Ricardo B. Maccioni
1982 ◽  
Vol 92 (2) ◽  
pp. 589-593 ◽  
Author(s):  
R Bernhardt ◽  
A Matus

It has recently been shown that high molecular weight microtubule-associated proteins (HMWP) in the brain are present in dendrites and are absent from axons (Matus et al., 1981, Proc. Natl. Acad. Sci. U. S. A. 78:3010-3014). In this study we followed the appearance of both HMWP and tubulin in the neonatal rat cerebellum by immunoperoxidase staining, concentrating particularly on comparing Purkinje cell dendrites with adjacent granule cell axons. In the axons both immunohistochemically demonstrable tubulin and structurally distinct microtubules are present at all stages of development. By contrast the Purkinje cell dendrites contain better neither tubulin nor microtubules at early stages of their growth. However, immunoperoxidase staining showed that these developing dendrites are rich in HMWP which are particularly concentrated in the dendritic distal regions. HMWP are also present as patches beneath the surface membrane of the cell body before the emergence of dendrites. Based on this data and the well-documented ability of HMWP to promote microtubule assembly, we propose the hypothesis that during the initial phase of Purkinje neuron differentiation HMWP form part of a specialized cytoskeletal structure which acts as a specifier for the development of dendrites as opposed to axons.


1981 ◽  
Vol 89 (3) ◽  
pp. 680-683 ◽  
Author(s):  
R F Ludueña ◽  
A Fellous ◽  
J Francon ◽  
J Nunez ◽  
L McManus

Two microtubule-associated proteins, tau and the high molecular weight microtubule-associated protein 2 (MAP 2), were purified from rat brain microtubules. Addition of either protein to pure tubulin caused microtubule assembly. In the presence of tau and 10 microM vinblastine, tubulin aggregated into spiral structures. If tau was absent, or replaced by MAP 2, little aggregation occurred in the presence of vinblastine. Thus, vinblastine may be a useful probe in elucidating the individual roles of tau and MAP 2 in microtubule assembly.


2004 ◽  
Vol 44 (4) ◽  
pp. 199-204 ◽  
Author(s):  
Kazuhide Kurosu ◽  
Makio Saeki ◽  
Yoshinori Kamisaki

Author(s):  
Richard B. Vallee

Microtubules are involved in a number of forms of intracellular motility, including mitosis and bidirectional organelle transport. Purified microtubules from brain and other sources contain tubulin and a diversity of microtubule associated proteins (MAPs). Some of the high molecular weight MAPs - MAP 1A, 1B, 2A, and 2B - are long, fibrous molecules that serve as structural components of the cytamatrix. Three MAPs have recently been identified that show microtubule activated ATPase activity and produce force in association with microtubules. These proteins - kinesin, cytoplasmic dynein, and dynamin - are referred to as cytoplasmic motors. The latter two will be the subject of this talk.Cytoplasmic dynein was first identified as one of the high molecular weight brain MAPs, MAP 1C. It was determined to be structurally equivalent to ciliary and flagellar dynein, and to produce force toward the minus ends of microtubules, opposite to kinesin.


1983 ◽  
Vol 96 (5) ◽  
pp. 1298-1305 ◽  
Author(s):  
D B Murphy ◽  
R R Hiebsch ◽  
K T Wallis

Microtubule protein purified from brain tissue by cycles of in vitro assembly-disassembly contains ATPase activity that has been postulated to be associated with microtubule-associated proteins (MAPs) and therefore significant for studies of microtubule-dependent motility. In this paper we demonstrate that greater than 90% of the ATPase activity is particulate in nature and may be derived from contaminating membrane vesicles. We also show that the MAPs (MAP-1, MAP-2, and tau factors) and other high molecular weight polypeptides do not contain significant amounts of ATPase activity. These findings do not support the concept of "brain dynein" or of MAPs with ATPase activity.


Sign in / Sign up

Export Citation Format

Share Document