Measuring deformations of highly elastic materials with resistance strain gauges

1969 ◽  
Vol 12 (2) ◽  
pp. 203-205 ◽  
Author(s):  
A. B. Zlochevskii ◽  
V. I. Mironov
1980 ◽  
Vol 25 (91) ◽  
pp. 175-182
Author(s):  
G. V. B. Cochran

AbstractIncreasing interest is being directed toward studies involving measurement of strain and strain-rates in sea and glacier ice. A number of techniques for obtaining these data over gauge lengths ranging from 1 m to several kilometers have been reported, but there has been little experience with shorter lengths. Use of commercially available electrical resistance strain-gauges (length 5–20 cm) intended for embedment in concrete offers a new approach in which multiple gauge, two- and three-dimensional arrays can be installed in ice with minimum effort and monitored with portable equipment. This report describes a pilot study designed to demonstrate the use of three types of electrical resistance strain gauges in sea ice under exposed field conditions. Results include detection of variations in strain fields related to tidal currents.


1973 ◽  
Vol 7 (1) ◽  
pp. 115-120
Author(s):  
G. M. Bartenev ◽  
V. V. Lavrent'ev ◽  
V. S. Voevodskii

1950 ◽  
Vol 23 (1) ◽  
pp. 67-88
Author(s):  
Fritz Rössler

Abstract A more extended investigation was made of the surprising flow phenomena which were found in an earlier study of rubber at low temperatures. The tensile apparatus was reconstructed so that a dead-weight load could be applied to the rubber test-specimen. Determinations of the dependence of the rate of flow on time of stressing, initial elongation, magnitude of the stress, and temperature showed that a simple law can be derived for expressing the flow phenomena. Yield point, change in color, and deterioration in physical properties, as well as the reversibility of these phenomena were investigated and are discussed. The phenomena of flow at room temperature are expressed by the same constants as at lower temperatures. Only the effective stress increases at low temperatures and only by this change does flow become perceptible. Different types of rubber were compared, and all showed approximately the same value for the flow constant. The essential characteristics of the flow phenomenon can be explained, on a basis of the theory of highly elastic materials, by their microliquid state of aggregation. This applies to the high degree of dependence of the mechanical properties of rubber on the temperature.


Sign in / Sign up

Export Citation Format

Share Document